跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宮欽浩
研究生(外文):Chin-Hau Gung
論文名稱:製備含銀/銅廢棄物吸附材於水中滅菌應用
論文名稱(外文):Water Disinfection Using Silver/Copper- Immobilized Adsorbents Prepared from Waste Materials
指導教授:孫幸宜
口試委員:賴世明張煜光李思禹
口試日期:2014-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:脫脂米糠茭白筍殼混合基材薄膜銀離子殺菌
外文關鍵詞:Defatted rice branWater Bamboo HuskMixed Matrix MembranesSilver ionsDisinfection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用農業廢棄物(脫脂米糠、茭白筍殼)為基材,以吸附的方式將金屬銀和金屬銅固定於農業廢棄物上,並應用於水中殺菌上。再以塑膠廢棄物(保麗龍、寶特瓶)為高分子基材,摻混20-30 wt%的植物廢棄物顆粒,製備成具孔洞的混合基材薄膜(Mixed Matrix Membrane, MMM),以混合基材薄膜吸附金屬銀後,應用於流動水中殺菌程序,期望以相較填充床更低的操作壓降(較為節能)來進行水中殺菌程序。吸附實驗結果得知,脫脂米糠和茭白筍殼顆粒對Ag+的吸附量分別為11.7和18.5 mg/g,對Cu2+的吸附量分別9.2和32.9 mg/g。DRB-Ag+和WBH-Ag+的SEM結果顯示,經過吸附程序後,顆粒表面覆蓋著金屬銀。從TEM結果得知,顆粒表面的金屬銀大小約在10-50 nm。批次殺菌實驗結果得知,抗菌顆粒最適化條件為0.016 g的DRB-Ag+ (含銀0.185 mg )和0.01 g 的WBH-Ag+ (含銀0.185 mg)於2小時可以將含大腸桿菌(E.coli) 2.6x105 CFU/mL完全殺死,殺菌率達99 %。流動殺菌程序結果得知,以兩片PS/DRB-Ag+ (含銀0.19 mg)薄膜進行流動殺菌實驗,在流率為0.5 mL/min 和菌液濃度2x105 CFU/mL的條件下,做貫穿曲線,其貫穿點約為56 bed volume。而抗菌顆粒於LB中銀離子的釋放量,DRB-Ag+ 於殺菌時間4小時的時候釋放出最大量銀離子為1.4 mg/g,而WBH-Ag+ 於殺菌時間12小時的時候釋放出最大量銀離子為0.6 mg/g。抗菌薄膜於LB中銀離子的釋放量,PS/DRB-Ag+ 於殺菌時間8小時的時候釋放出最大量銀離子為1.3 mg/g,PET/WBH-Ag+ 於殺菌時間8小時的時候釋放出最大量銀離子為0.6 mg/g。而在流動殺菌實驗中,PS/DRB-Ag+ 於bed volume為143.2的時候釋放出最大量銀離子為1.33 mg/g,PET/WBH-Ag+ 於bed volume為179的時候釋放出最大量銀離子為0.52 mg/g。
In this study,use agricultural waste (defatted rice bran, water bamboo husk) as the substrate, and then use it to adsorb silver and copper ions to fixed on agricultural waste, and applied to the water disinfection. Then plastic waste (Styrofoam, plastic bottles) for the polymer substrate for Mixed Matrix Membrane, mixing 20-30 wt% of agricultural waste particles with polymer to prepare pore membrane. After the adsorption of silver ion, used in water disinfection process, hoping use membrane can get lower operating pressure drop (more saving) compared with packed bed in water disinfection process. The results of adsorption, the adsorption capacity of defatted rice bran and water bamboo husk particles for silver were 11.7 and 18.5 mg / g. respectively, for adsorption capacity of copper were 9.2 and 32.9 mg / g. The results of SEM , after batch adsorption process , surface of DRB-Ag+ and WBH-Ag+ is covered by silver. The results of TEM, the size of metallic silver in particle are about 10-50 nm. Experimental results show that the batch disinfection, optimal conditions of antibacterial particles is 0.016 g of DRB-Ag+ (containing silver 0.185 mg) and 0.01 g of WBH-Ag+ (containing silver 0.185 mg) in 2 hours can contain E. coli (E. coli) 2.6 x 105 CFU / mL completely kill, sterilization rate of 99%. Current sterilization procedures that result in two PS / DRB-Ag+ (silver 0.19 mg) flow bactericidal test films, the flow rate of 0.5 mL / min under conditions to 40 mL and the concentration of E.coli containing 2x105 CFU / mL bacteria solution flows through the membrane, the bacteria can be completely killed within E.coli.
誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第二章 文獻回顧 1
2.1農業副產品及植物廢棄物吸附汙染物之文獻 1
2.2水處理殺菌 3
2.3銀、銅於水中殺菌之優勢、應用與機制 5
2.4銀/複合抗菌材料之殺菌機制及應用 6
第三章 實驗方法 11
3.1實驗藥品、材料、儀器 11
3.1.1藥品 11
3.1.2分析儀器 12
3.2抗菌基材之製備 12
3.2.1植物廢棄顆粒之製備 12
3.3植物廢棄顆粒與混合基材薄膜之定性分析 13
3.3.1界面電位分析 13
3.3.2農業廢棄物官能基分析 13
3.3.3比表面積分析 13
3.3.4薄膜中植物廢棄物顆粒含量分析 14
3.3.5離子交換容量 14
3.4抗菌基材對銀、銅離子之批次吸附 14
3.4.1批次吸附 14
3.4.2銀、銅離子定量 14
3.4.3吸附等溫曲線 15
3.5抗菌顆粒與抗菌薄膜之製備與定性分析 15
3.5.1抗菌顆粒之製備 15
3.5.2抗菌混合基材薄膜之製備 15
3.5.3 SEM與EDS分析 16
3.5.4 TEM分析 16
3.6殺菌實驗 16
3.6.1菌液培養 16
3.6.2批次殺菌實驗 16
3.6.3流動殺菌實驗 17
3.7 抗菌顆粒及抗菌薄膜銀離子釋放量實驗 16
第四章 結果與討論 18
4.1農業廢棄物顆粒之性質分析結果 18
4.1.1農業廢棄物顆粒之官能基分析 18
4.1.2粒徑分布分析結果 18
4.1.3表面電位分析結果 18
4.1.4農業廢棄物顆粒之比表面積分析與離子交換容量結果 18
4.2農業廢棄物與混合基材薄膜批次吸附結果 19
4.2.1農業廢棄物顆粒對銀、銅之批次吸附結果 19
4.2.2混合基材薄膜對銀、銅之批次吸附結果 20
4.3抗菌植物廢棄物顆粒與混合基材薄膜性質分析 20
4.3.1抗菌顆粒SEM分析結果 20
4.3.2抗菌顆粒TEM分析結果 20
4.4批次殺菌結果 21
4.4.1銀離子與銅離子對批次殺菌的影響結果 21
4.4.2殺菌時間對批次殺菌的影響結果 21
4.4.3混合基材薄膜批次殺菌結果 22
4.5流動殺菌實驗結果 22
4.5.1流量對流動殺菌的影響結果 22
4.5.2流動殺菌程序貫穿曲線之結果 22
4.6 抗菌顆粒及抗菌薄膜的銀離子釋放量結果 22
第五章 結論 47
參考文獻 49

表目錄
表一 文獻中農業廢棄物吸附汙染物之整理 1
表二 常見水媒傳播之病菌 3
表三 常見水中殺菌技術的優缺點 4
表四 農業廢棄顆粒之性質分析 24
表五 吸附等溫曲線之常數 25
表六 銀離子與銅離子對批次殺菌實驗的影響 26
表七 殺菌時間對批次殺菌實驗的影響 27
表八 抗菌薄膜之性質 28
表九 抗菌薄膜批次殺菌結果 29
表十 流量對流動殺菌程序之影響 30
表十一 本研究與文獻之流動殺菌程序結果之比較 31

圖目錄
圖一 銀離子與含氧官能基離子交換機制 7
圖二 實驗架構圖 10
圖三 使用FTIR對農業廢棄物顆粒進行官能基分析 32
圖四 農業廢棄物顆粒之粒徑分布圖 33
圖五 農業廢棄顆粒之表面界達電位分佈型態 34
圖六 農業廢棄物顆粒之批次吸附曲線 35
圖七 農業廢棄物顆粒對銀、銅離子之吸附等溫曲線 36
圖八 農業廢棄物-銀 顆粒SEM影像圖、MAPPING與EDX分析 37
圖九 農業廢棄物-銀 顆粒TEM影像圖 38
圖十 銀顆粒的含銀量對批次殺菌的影響之總菌落數檢測 39
圖十一 含銅顆粒的含銅量對批次殺菌的影響之總菌落數檢測 40
圖十二 殺菌時間對批次殺菌的影響之總菌落數檢測 41
圖十三 抗菌薄膜批次殺菌之總菌落數檢測 42
圖十四 流動殺菌流程圖 43
圖十五 流量對流動殺菌程序之影響菌落數檢測 44
圖十六 抗菌薄膜流動殺菌程序貫穿曲線及銀離子釋放量 45
圖十七 抗菌顆粒及抗菌薄膜於LB中銀離子隨時間的釋放量 46
1. E. N. E. Qada, S. J. Allen, G. M. Walker, Adsorption of basic dyes from aqueous solution onto activated carbons, Chemical
Engineering Science , 135 (2008) 174.

2. U. Kumar, M. Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresource Technology , 97 (2006) 104.

3. Z. Reddad, C. Gerente, Y. Andres, M. C. Ralet, J. F. Thibault, P. L. Cloirec, Ni(Ⅱ) and Cu(Ⅱ) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers, 49 (2002) 23.

4. A. Saeed, M. W. Akhter, M. Iqbal, Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45 (2005) 25.

5. B. H. Hameed, D. K. Mahmoud, A. L. Ahmad, Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316 (2008) 78.

6. M. T. Uddin, M. A. Islam, S. Mahmud, M. Rukanuzzaman, Adsorptive removal of methylene blue by tea waste, Journal of Hazardous Materials, 164 (2009) 53.

7. G. Annadurai, R. S. Juang, D. J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, Journal of Hazardous Materials, B92 (2002) 263.

8. Y. S. Ho, W. T. Chiu, C. C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresource Technology, 96 (2005) 1285.

9. M. A. M. Salleh, D. K. Mahmoud,W. A. W. A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes : A comprehensive review, Desalination, 280 (2011) 1.

10. V. Vadivelan, K. V. Kumar, Equilibrium, kinetics, mechanism and process design for sorption of methylene blue onto rice husk, Journal of Colloid and Interface Science, 286 (2005) 90.

11. F. A. Pavan, A. C. Mazzocato, Y. Gushikem, Removal of methylene blue from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent, Bioresource Technology, 99 (2008) 3162.

12. M. Dogan, H. Abak , M. Alkan, Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters, Journal of Hazardous Materials, 164 (2009) 172.

13. R. K. Xu, S. C. Xiao, J. H. Yuan, A. Z. Zhao, Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues, Bioresource Technology, 102 (2011) 10293.

14. V. M. Vucurovic R. N. Razmovski, M. N. Tekic, Methylene blue (cationic dye) adsorption onto sugar beet pulp: Equilibrium isotherm and kinetic studies, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 108.

15. Nasernejad, T.E.Zedeh, B.B.Pour, M.Bygi, A.Zamani, Comparison for biosorption modeling of heavy metals Cr(III), Cu(II), Zn(II) adsorption from wastewater by carrot residues, Process Biochemistry , 40 (2005) 1319.

16. S.F. Montanher, E.A. Oliveira, M.C. Rollemberg, Removal of metal ions from aqueous solutions by sorption onto rice bran, Journal of Hazardous Materials, B117 (2005) 207.

17. H.B.Asberry, C.Y. Kuo, C.H.Gung, E.D.Conte, S.Y.Suen, Characterization of water bamboo husk biosorbents and their application in heavy metal ion trapping, Microchemical Journal ,113 (2014) 59

18. J.F.Li, Y.Huang, Y.Ding, Z.L.Yang, S.B.Li, X.S.Zhou, F.R.Fan, W.Zhang, Z.Y.Zhou, D.Y.Wu, B.Ren, Z.L.Wang, Z.Q.Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, NATURE, 18 (2010) 464.

19. E. A .Bryant, G. P.Fulton, ,C. Budd, , Disinfection Alternatives for Safe Drink Water, Van Nostrand Reinhold, (1992).

20. Tchobanoglous, G. Burton (eds.) ,Wastewater Engineering: Treatment, Disposal and Reuse, McGraw-Hill, (1991).

21. G. J. Tortora, B. R. Funke, C. L. Case, Microbiology an Introduction, Pearson Benjamin Cummings, (2004).

22. 楊雯涵,新型奈米銀殺菌濾材去除大腸桿菌之研究,碩士論文,私立逢甲大學環境工程與科學學系研究所,台中,台灣.

23. 黃鈺茹, 黃登福,自來水中氯化消毒副產物之飲用安全性,自來水會刊, 第3期 (2007) 23.

24. A.D.Russell, D.Sc, F.R.C.Path, S.Pharm, W.B.Hugo, Antimicrobial activity and action of silver, Progress in Medicinal Chemistry, 351 (1994) 31.

25. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D.Dash, ,Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnol., 18 (2007) 1.

26. Y. S. E. Lin, R. D.Vidic, J. E. Stout, V. L.Yu, Legionella in water distribution systems, Journal of AWWA, 90 (1998) 112.

27. S.J.Park, Y.S.Jang, Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior, Journal of Colloid Interface science, 261 (2003) 238.

28. S. L. Percival, J. S. Knapp, R.. Edyvean, D. S. Wales , Biofilm development on stainless steel in mains water, Water Research , 32 (1998) 243.

29. S. Zhang, R. Fu, D. Wu, W. Xu, Q. Ye, Z. Chen, Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels, Carbon, 42 (2004) 3029

30. T. Dang, D. Lam, S. Reid, E. Wang, Design of colloidal silver disinfection for a public swimming pool with solar heating, University of Guelph, Proceedings of the ENGG 3100: Design III projects, 23 (2007) 178.
31. G. McDonnell, A. D. Russell, Antiseptics and disinfectants: activity, action, and resistance, Clinical Microbiology Reviews, 12 (1999) 147.

32. H.Ortiz-Ibarra, N. Casillas, V. S. Maximiliano, B. S. Refugio, T.V. Wencel, D. C. Sergio, G. Salazar, Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes, Journal of Colloid and Interface Science, 314 (2007) 562.

33. J.N. Cutler, N. Chen, D.T. Jiang, G.P. Demopoulos, Y. Jia and J.W. Rowson, The Nature of Arsenic in Uranium Mill Tailings by X-Ray Absorption Spectroscopy, Journal of Physics , 107 (2003) 337.

34. A.B.G. Lansdown, Silver I: its antibacterial properties and mechanism of action, Journal of wound care,4 (2002) 11.

35. H. L. Pape, F. S. Serena, P. Contini, C. Devillers, A. Maftah, P. Leprat, Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver: Bactericidal activity of ACF(Ag) mediated by ROS, Journal of Inorganic Biochemistry, 98 (2004) 1054.

36. A.Oya, T. Wakahara, S. Yoshida, Preparation of pitch-based antibacterial activated carbon fiber, Carbon, 31 (1993) 124.

37. S. Miyanaga, A. Hiwara, H. Yasuda, Preparation and high bacteriostatic action ultrafine silver particles, Science and Technology of Advanced Materials , 3 (2002) 103.

38. D. l. Rosa-Gómez, M. T. Olguín, D. Alcántara, Bactericides of coliform microorganisms from wastewater using silver-clinoptilolite rich tuffs, Applied Clay Science, 40 (2008) 45.

39. P. Jain, T. Pradeep, Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter, Biotechnology and Bioengineering , 90 (2005) 59.

40. S. Daniele Lantagne Alethia Environmental, Investigation of the Potters for Peace Colloidal Silver Impregnated Ceramic Filter, (2001).

41. S. Lin, R. Huang, Y. Cheng, J. Liu, L.T. Lau, M. R. Wiesner, Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection, w ater research , 47 ( 2013) 3959.

42. D. V. Quang, P. B. Sarawade, S. J. Jeon, S. H. Kim, J.K. Kim, Y. G. Chai, H. T. Kim , Effective water disinfection using silver nanoparticle containing silica beads, Applied Surface Science, 266 (2013) 280.

43. H. N. Mthombeni, L. M. Monyatsi, S. O. Maurice, N. B. M. Maggie, Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column , Journal of Hazardous Materials, 217 (2012) 133.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top