跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/02 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊純喻
研究生(外文):YANG, CHUN-YU
論文名稱:洩漏模式表面電漿子共振感測器之研製
論文名稱(外文):Development of leaky mode surface plasmon resonance based sensor
指導教授:李友竹
指導教授(外文):LI, YU-CHU
口試委員:黃昭銘黃仲麒
口試委員(外文):HUANG, CHAO-MINGHUANG,CHUNG-CHI
口試日期:2017-07-21
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:表面電漿子共振角度量測有機化合物溶液無機化合物溶液
外文關鍵詞:Surface Plasmon ResonanceAngular interrogationOrganic compound solutionInorganic compound solution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究改良表面電漿子共振(Surface Plasmon Resonance, SPR)感測器之半圓柱稜鏡定位機構,降低反射訊號與漫射訊號對PIN光感測器之干擾,並且搭配Visual Basic圖控介面控制馬達旋轉及擷取50奈米厚度黃金薄膜端面共振洩漏模態(Leaky Mode)訊號。
感測原理係改變雷射光源的入射角度,透過Glan-Thompson稜鏡偏振成P波,經由感測器接收溶液不含反射P波之共振洩漏模態訊號,藉此檢視分析物溶液不同成分、濃度與表面電漿子相互作用之角度圖譜特性。
本研究分別以麥芽糖(C12H22O11)、葡萄糖(C6H12O6)與果糖(C6H12O6)三種有機物,以及硝酸鎂(Mg(NO3)2)、氯化銨(NH4Cl)與氯化鈣(CaCl2)三種無機物為溶質,水為溶劑,調配成不同重量百分比濃度之水溶液。在相同室溫條件下測試,發現不同成分與濃度條件下,於 60˚~65˚入射角之間尖峰圖譜相位反應變化明顯不同。經由量測光強度訊號中尖峰圖譜相位與分析物成分濃度的關係之圖譜,可以作為未來進行相同分析物成分濃度定量檢測之依據。

In this study, we improved the positioning mechanism of the semi-cylindrical prism for the surface plasmon resonance (SPR) based sensor to reduce the noises from the reflected signal as well as the diffused signal to the PIN light sensor. With the help of the graphical control panel written in the Microsoft Visual Basic language for controlling the microstep motor, the leaky mode signal of surface plasmon resonance along the interface between the gold film of 50 nm thickness and the semi-cylindrical prism could be measured through the positioning mechanism.
In principle, the SPR based sensor acquired the leaky mode signal without the reflected p-wave signal at the same ambient condition under the influence of different concentrations of each chosen analyte solution at different incident angles of the p-wave laser light polarized by the Glan-Thompson polarizer.
In this study, three kinds of organic compounds including maltose (C12H22O11), glucose (C6H12O6) and fructose (C6H12O6), and three kinds of inorganic compounds including magnesium (Mg(NO3)2), ammonium chloride (NH4Cl) and calcium chloride (CaCl2) were formulated into different concentrations of aqueous solutions. The test results showed that the leaky mode signal peak at the incident angles between 60˚ and 65˚ shift significantly for different compounds and concentrations. The relation of concentrations vs. incident angles obtained after the peak shift analysis for each analyte might be served as the benchmark for quantitative analysis of the same analyte in the future.

摘要 II
ABSTRACT III
目次 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 4
1.4 論文架構 4
第二章 洩漏模態表面電漿子原理 6
2.1 表面電漿子基本原理 6
2.1.1 光的傳播電磁理論 6
2.1.2 光的偏極與模態 9
2.1.3 全反射與漸逝波 13
2.2 表面電漿共振現象 17
2.2.1 基本性質 17
2.2.2 激發方式 22
2.2.2.1 稜鏡耦合(Prism Coupling)法 23
2.2.2.2 光柵耦合(Grating Coupling)法 26
2.2.2.3 波導耦合(Waveguide Coupling)法 28
2.2.3 量測方式與特性參數 28
2.3 雙層以上界面結構之反射率與相位 33
2.3.1雙層界面結構之反射率與相位 33
2.3.2三層介面結構之反射率與相位 34
2.4 洩漏模式表面電漿子原理1` 37
2.4.1 洩漏模態與導引模態表面電漿子極化介紹 37
2.4.2 洩漏模態表面電漿子極化理論 38
第三章 實驗系統與方法 45
3.1 稜鏡與感測器 45
3.1.1 稜鏡之清潔 45
3.1.2 稜鏡選用 48
3.2 設備說明 49
3.2.1 新型放置稜鏡定位系統 52
3.3 檢測物 53
3.3.1 溶液配製 54
3.4 有機物化合物 54
3.4.1 麥芽糖(C12H22O11) 54
3.4.2 葡萄糖(C6H12O6) 55
3.4.3 果糖(C6H12O6) 56
3.5 無機物化合物 56
3.5.1 硝酸鎂(Mg(NO3)2) 56
3.5.2 氯化銨(NH4Cl) 57
3.5.3 氯化鈣(CaCl2) 58
3.6 實驗步驟 58
3.7 控制介面與量測流程 60
第四章 結果與討論 63
4.1定位不佳造成不規則性 63
4.2實驗數據 64
4.2.1 麥芽糖 64
4.2.2 葡萄糖 66
4.2.3 果糖 68
4.2.4 硝酸鎂 70
4.2.5 氯化銨 72
4.2.6 氯化鈣 74
4.2.7 有機物、無機物濃度與角度關係 76
第五章 結論 78
參考文獻 80

1.H. H. Nguyen, J. Park, S. Kang, M. Kim, "Surface plasmon resonance: a versatile technique for biosensor applications," Sensors (Basel), 15(5) (2015) 10481-10510.
2.R. Legrand, K. Takagi, S. Fetissov, "Immunoglobulin G preparation from plasma samples and analysis of its affinity kinetic binding to peptide hormones," Community Contributed Protocol Exchange (2014).
3.C. L. Wong, M. Olivo, "Surface Plasmon Resonance Imaging Sensors: A Review," Plasmonics, 9 (4) (2014) 809-824.
4.M. Li, S. K. Cushing, N.-Q. Wu, "Plasmon-enhanced optical sensors: a review," Analyst,140 (2015) 386-406.
5.P. Strobbia, E. Languirand, B. M. Cullum, " Recent advances in plasmonic nanostructures for sensing: a review," Opt. Eng. 54(10) (2015) 100902.
6.A. Andres-Arroyo, W. J. Toe, F. Wang, P. J. Reece, "Localized Surface Plasmon Resonance Spectroscopy Combined With Optical Tweezers For Nanorod Dynamics Characterization," Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America (2015) paper OtM3E.4.
7.J.-S. Huang, Y.-T. Yang, " Origin and Future of Plasmonic Optical Tweezers," Nanomaterials, 5 (2015)1048-1065.
8.R. W.Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Magm., 4 (1902) 396-402.
9.R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev., 106 (1957) 874-881.
10.U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev., 124 (1961) 1866-1878.
11.E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmon excited by light.,” Z. Naturforsch., 23A (1968) 2135-2136.
12.A. Otto, “Excitataion of surface plasma waves in silver by the method of frustrated total reflection, ” Z. Physik 216 (1968) 398-410.
13.C. Nylander, et al, "Gas detection by means of surface plasmons resonance," Sensors and Actuators B, 3 (1982) 79-88.
14.B. Liedberg, C. Nylander, I. Lundstrum, "Surface plasmonresonance for gas detection and biosensing," Sensors and Actuators B,4 (1983) 304.
15.詹家銘、李舒昇、李世光,圓偏光表面電漿子干涉儀,機械月刊第三十四卷第五期 (2005) 50-63.
16.Espacent Patent search
17.楊豐懋,表面電漿子共振於無機化合物溶液之特性探討,南台科技大學機械工程系碩士論文,2014年。
18.Eugene Hecht, Optics, Addison-Wesley, 1998.
19.M. V. Klein, T. E. Furtak, Optics, 2nd Ed., John Wiley & Sons, 1986.
20.顏炳華、溫榮弘 譯,光微機電系統,全華圖書公司,2005年。
21.安毓英、曾小東,光學感測與量測,五南圖書出版公司,2004年。
22.楊慶忠,光電工程,新文京開發出版公司,2007年。
23.B. C. Smith, Fundamentals of Fourier Transformation Infrared Spectroscopy, CRC press, 1996.
24.J. Homola, Surface Plasmon Resonance Based Sensors, Springer, 2006.
25.J. Homola, S.S Yee, G. Gauglitz, Surface Plasmon resonance sensors: review, Sensors and Actuators B, 54 (1999) 3-15.
26.J. Homola, I. Koudela, S. S. Yee, , Surface Plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, Sensors and Actuators B, 54 (1999) 16-24.
27.S.G. Nelson, K.S. Johnston, S.S. Yee, High sensitivity surface plasmon resonance sensor based on phase detection, Sensors and Actuators B, 35-36 (1996) 187-191.
28.J. Homola, S.-S. Yee, G. Gauglitz, Surface Plasmon resonance sensors: review, Sensors and Actuators B, 54, 3-15, 1999.
29.M. I. Dyakonov, "New type of electromagnetic wave propagating at an interface," Sov. Phys. JETP, 67 (4) (1988) 714-716.
30.H.-H. Liu, H.-C. Chang, "Leaky Surface Plasmon Polariton Modes at an Interface Between Metal and Uniaxially Anisotropic Materials," IEEE Photonics Journal, 5 (6) 4800806 (2013)1-6.
31.丁均怡等編著,光學元件精密製造與檢測,國家實驗研究院儀器科技研究中心出版,2007年。
32.張盛智,固定光路長度表面電漿子共振儀之研製,南台科技大學機械工程系碩士論文,2009年。
33.陳彥宏,以表面電漿子共振現象探討植物對光線作用之生理反應研究,南台科技大學機械工程系碩士論文,2012年。
34.NIH.(n.d.). Maltose. USA:U.S. National Library of Medicine, National Center for Biotechnology Information. Retrieved July 17, 2017, from https://pubchem.ncbi.nlm.nih.gov/compound/6255#section=Top
35.NIH.(n.d.). Glucose. USA:U.S. National Library of Medicine, National Center for Biotechnology Information. Retrieved July 17, 2017, from https://pubchem.ncbi.nlm.nih.gov/compound/79025#section=Top
36.NIH.(n.d.). Fructose. USA:U.S. National Library of Medicine, National Center for Biotechnology Information. Retrieved July 17, 2017, from https://pubchem.ncbi.nlm.nih.gov/compound/5984#section=Top
37.NIH. (n.d.). Magnesium nitrate. USA:U.S. National Library of Medicine, National Center for Biotechnology Information. Retrieved July 17, 2017, from https://pubchem.ncbi.nlm.nih.gov/compound/25212#section=Top
38.NIH.(n.d.).Ammonium chloride. USA:U.S. National Library of Medicine, National Center for Biotechnology Information. Retrieved July 17, 2017, from https://pubchem.ncbi.nlm.nih.gov/compound/25517#section=Top
39.NIH.(n.d.). Calcium chloride. USA:U.S. National Library of Medicine, National Center for Biotechnology Information. Retrieved July 17, 2017, from https://pubchem.ncbi.nlm.nih.gov/compound/5284359#section=Top

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top