|
(1)Oppermann, U. C., Belai, I., and Maser, E. (1996) Antibiotic resistance and enhanced insecticide catabolism as consequences of steroid induction in the gram-negative bacterium Comamonas testosteroni. J. Steroid Biochem. Mol. Biol. 58, 217-23.
(2)Talalay, P., Dobson, M. M., and Tapley, D. F. (1952) Oxidative degradation of testosterone by adaptive enzymes. Nature 170, 620-1.
(3)Benach, J., Filling, C., Oppermann, U. C., Roversi, P., Bricogne, G., Berndt, K. D., Jornvall, H., and Ladenstein, R. (2002) Structure of bacterial 3beta/17beta-hydroxysteroid dehydrogenase at 1.2 A resolution: a model for multiple steroid recognition. Biochemistry 41, 14659-68.
(4)Oppermann, U. C., and Maser, E. (1996) Characterization of a 3 alpha-hydroxysteroid dehydrogenase/carbonyl reductase from the gram-negative bacterium Comamonas testosteroni. Eur. J. Biochem. 241, 744-9.
(5)Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J., and Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34, 6003-13.
(6)Oppermann, U., Filling, C., Hult, M., Shafqat, N., Wu, X., Lindh, M., Shafqat, J., Nordling, E., Kallberg, Y., Persson, B., and Jornvall, H. (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Bio.l Interact. 143-144, 247-53.
(7)Xiong, G., and Maser, E. (2001) Regulation of the steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. J. Biol. Chem. 276, 9961-70
(8)Rossmann, M. G., and Argos, P. (1975) A comparison of the heme binding pocket in globins and cytochrome b5. J. Biol. Chem. 250, 7525-32.
(9)Maser, E., Xiong, G., Grimm, C., Ficner, R., and Reuter, K. (2001) 3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation. Chem. Bio.l Interact. 130-132, 707-22.
(10)Grimm, C., Maser, E., Mobus, E., Klebe, G., Reuter, K., and Ficner, R. (2000) The crystal structure of 3alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J. Biol. Chem. 275, 41333-9.
(11)Ensor, C. M., and Tai, H. H. (1996) Site-directed mutagenesis of the conserved serine 138 of human placental NAD+-dependent 15-hydroxyprostaglandin dehydrogenase to an alanine results in an inactive enzyme. Biochem. Biophys. Res. Commun. 220, 330-3.
(12)Oppermann, U. C., Filling, C., Berndt, K. D., Persson, B., Benach, J., Ladenstein, R., and Jornvall, H. (1997) Active site directed mutagenesis of 3 beta/17 beta-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions. Biochemistry 36, 34-40.
(13)Cols, N., Atrian, S., Benach, J., Ladenstein, R., and Gonzalez-Duarte, R. (1997) Drosophila alcohol dehydrogenase: evaluation of Ser139 site-directed mutants. FEBS Lett. 413, 191-3.
(14)Obeyesekere, V. R., Trzeciak, W. H., Li, K. X., and Krozowski, Z. S. (1998) Serines at the active site of 11 beta-hydroxysteroid dehydrogenase type I determine the rate of catalysis. Biochem. Biophys. Res. Commun. 250, 469-73.
(15)Vedadi, M., Barriault, D., Sylvestre, M., and Powlowski, J. (2000) Active site residues of cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase from Comamonas testosteroni strain B-356. Biochemistry 39, 5028-34.
(16)Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jornvall, H., and Oppermann, U. (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J. Biol. Chem. 277, 25677-84.
(17)Mobus, E., and Maser, E. (1998) Molecular cloning, overexpression, and characterization of steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. A novel member of the short-chain dehydrogenase/reductase superfamily. J. Biol. Chem. 273, 30888-96.
(18)Marcus, P. I., and Talalay, P. (1956) Induction and purification of alpha- and beta-hydroxysteroid dehydrogenases. J. Bio.l Chem. 218, 661-74.
(19)Hwang, C. C., Chang, Y. H., Hsu, C. N., Hsu, H. H., Li, C. W., and Pon, H. I. (2005) Mechanistic roles of Ser-114, Tyr-155, and Lys-159 in 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. J. Biol. Chem. 280, 3522-8.
(20)Maser, E., Mobus, E., and Xiong, G. (2000) Functional expression, purification, and characterization of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. Biochem. Biophys. Res. Commun. 272, 622-8.
(21)Varughese, K. I., Skinner, M. M., Whiteley, J. M., Matthews, D. A., and Xuong, N. H. (1992) Crystal structure of rat liver dihydropteridine reductase. Proc. Natl. Acad. Sci. U S A 89, 6080-4.
(22)Somers, W. S., Stahl, M. L., and Sullivan, F. X. (1998) GDP-fucose synthetase from Escherichia coli: structure of a unique member of the short-chain dehydrogenase/reductase family that catalyzes two distinct reactions at the same active site. Structure 6, 1601-12.
(23) Bradford, M. M. ( 1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-54.
(24) Shuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-19.
(25) Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J., and Schubert, D. (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096-11.
(26) Neet, K. E., and Timm, D. E. (1994) Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci 3, 2167-74.
(27) Huang, S. M., Chou, W. Y., Lin, S. I., and Chang, G. G. (1998) Engineering of a stable mutant malic enzyme by introducing an extra ion-pair to the protein. Proteins 31, 61-73.
(28) Giampiero, M., Almerinda, D. V., Nicola, R., and Alessandro, F. A. (2004) The importance of being dimeric. FEBS J. 272, 16-27.
(29) Monod, J., Wyman, J. and Changeux, J. P. (1965) On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12, 88-118.
(30) Ghosh, D., Sawicki, M., Pletnev, V., Erman, M., Ohno, S., Nakajin, S., and Duax, W. L. (2001) Porcine carbonyl reductase. structural basis for a functional monomer in short chain dehydrogenases/reductases. J. Biol. Chem. 276, 18457-63. (31) Borchert, T. V., Zeelen, J. P., Schliebs, W., Callens, M., Minke,W., Jaenicke, R., and Wierenga, R. K. (1995) An interface point-mutation variant of triosephosphate isomerase is compactly folded and monomeric at low protein concentrations. FEBS Lett. 367, 315-318.
(32) Vargo, M. A., Nguyen, L., and Colman, R. F. (2004) Subunit interface residues of glutathione S-transferase A1-1 that are important in the monomer-dimer equilibrium. Biochemistry 43, 3317-3335.
(33) Boulanger, R. R., Jr., and Kantrowitz, E. R. (2003) Characterization of a monomeric Escherichia coli alkaline phosphatase formed upon a single amino acid substitution. J. Biol. Chem. 278, 23497-501. (34) Creighton, T. E. Protein structure: A practical approach. IRL Press Oxford (35)Righetti, P. G., and Verzola, B. (2001) Folding/unfolding/refolding of proteins: present methodologies in comparison with capillary zone electrophoresis. Electrophoresis 22, 2359-74. (36) Beernink, P. T., and Tolan, D. R. (1996) Disruption of the aldolase A tetramer into catalytically active monomers. Proc. Natl. Acad. Sci. U S A 93, 5374-9. (37) Cioni, P., Stroppolo, M. E., Desideri, A., and Strambini, G. B. (2001) Dynamic features of the subunit interface of Cu,Zn superoxide dismutase as probed by tryptophan phosphorescence. Arch. Biochem. Biophys. 391, 111-8.
|