跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉得均
研究生(外文):Te-Chun Liu
論文名稱:微植體於矯正錨定應用之生物力學探討
論文名稱(外文):Biomechanical investigation of miniscrews for orthodontic anchorage
指導教授:張志涵張志涵引用關係劉佳觀
指導教授(外文):Chih-Han ChangJia-Kuang Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:92
中文關鍵詞:生物力學矯正錨定微骨釘有限元素分析
外文關鍵詞:BiomechanicsOrthodontic anchorageMiniscrewFinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
錨定的控制,在牙科矯正治療當中扮演一個重要的角色,是影響治療成功與否的關鍵因素。近年來,屬於臨時植體的微骨釘已廣泛地應用於臨床上的錨定控制,相對於傳統牙科贗復植體的錨定系統,微骨釘具有較易於植入與取出、手術創傷較小、可種植的部位較多、可立即受力和價格較便宜等優點。然而,在臨床使用上的失敗率仍然困擾著矯正醫師。而造成微骨釘失敗的可能原因是病患本身的骨質條件、微骨釘的尺寸、植入的深度、露出的長度和施力的狀況。所以,本研究目的是利用臨床病例分析與有限元素法來探討影響微骨釘於矯正錨定應用的生物力學的因素。在臨床病例分析上蒐集了11位共使用20支微骨釘當作矯正錨定的病患。在有限元素法模擬部分則是建立包含微骨釘和骨塊的立體模型,模擬各種不同的參數,包括皮質骨厚度、髓質骨密度、微骨釘直徑、微骨釘長度、植入深度、露出長度、施力大小和施力方向,進行有限元素分析,探討在皮質骨的最大von Mises應力和微骨釘的最大位移。結果顯示在所有的模型中,皮質骨的最大von Mises應力都是集中在靠近微骨釘的受壓力面,而微骨釘的最大位移都是在頭部的頂端。此應力與位移,對於各種模擬參數的相關性是類似的。應力值與位移量,是隨著皮質骨厚度的減少而增加、隨著微骨釘直徑的減少而增加、隨著露出長度的增加而增加、與施力大小成正比、且施力方向在90°有最大值;而微骨釘在大於2 mm的植入深度且在相同的露出長度下所產生的應力值與位移量幾乎不變;而在皮質骨厚度大於0.5 mm與不同的髓質骨彈性模數下結果也幾乎相等。經由本研究的結果可以得知:大於0.5 mm的皮質骨厚度、大於1.2 mm的微骨釘直徑、大於2 mm的植入深度、儘可能減少露出長度、施力大小依臨床所需、施力方向避免與微骨釘成垂直等條件之下,將可增加微骨釘在矯正錨定應用的成功率。
Anchorage control plays an important and determinant role in successful orthodontic treatment. Recently, orthodontic miniscrews, used as temporary implants, have been widely used for anchorage control in clinical practice. Compared to the traditional dental implant anchorage systems, the advantages of miniscrew are simple to insert and to remove, less trauma surgery, less limitation in implant position, immediate loading and less cost. However, the failure of miniscrews in clinic is still bothering the orthodontists. It was hypothesized that bone quality, miniscrew dimensions, implanted depth, exposed length and force conditions would contribute to the failure of miniscrew. The aim of the present study was to investigate the biomechanical influences of these factors in miniscrews for orthodontic anchorage by finite element method and clinical data analysis. Eleven patients were included with total 20 miniscrews applied for orthodontic anchorage for clinical analysis. In finite element simulations, the three-dimensional model of bone block integrated with miniscrew was built. The evaluated parameters included cortex thickness, cancellous bone property, miniscrew diameter, miniscrew length, implanted depth, exposed length, force magnitude and force direction. The maximum von Mises stress of cortex and displacement of miniscrew were investigated and compared. The results showed that the maximum von Mises stress of cortex concentrated in the compressed surface adjacent to the miniscrew and the maximum displacement of miniscrew located at the top of screw head in all models. The tendency of changes of the stress and displacement related to these parameters were similar. In general, both stress and displacement increased with the decreasing of cortex thickness, decreasing of miniscrew diameter, increasing of exposed length, and were linearly proportioned to the force magnitude and had the largest values in 90° force direction. For various lengths of miniscrew, these two indices were almost unchanged when the exposed lengths were equal with the implanted depths larger than 2 mm. For the same miniscrew, both stress and displacement varied insignificantly under various cancellous bone properties with cortex thickness greater than 0.5 mm. This study concluded that to increase the clinical success rate of miniscrew anchorage, the cortex should be thicker than 0.5 mm; the miniscrew diameter should be greater than 1.2 mm; the implanted depth should be longer than 2 mm; the exposed length should be as short as possible; the force magnitude should not exceed the clinical indications; and the force direction should prevent perpendicular to the miniscrew axis.
Abstract …………………………………………………………………… I
Acknowledgments ………………………………………………………… III
List of Tables …………………………………………………………… VI
List of Figures …………………………………………………………… VII

Chapter 1 Introduction
1.1 Background ………………………………………………………………1
1.2 Literature review …………………………………………………… 3
1.3 Motivation ………………………………………………………………7
1.4 Objectives ………………………………………………………………7

Chapter 2 Material and methods
2.1 Clinical data analysis ………………………………………………8
2.2 Finite element analysis …………………………………………… 13

Chapter 3 Results
3.1 Clinical data analysis ………………………………………………22
3.2 Finite element analysis …………………………………………… 25
3.2.1 Stress distribution ……………………………………………… 26
3.2.2 Maximum von Mises stress in bone ………………………………30
3.2.3 Maximum displacement in miniscrew …………………………… 39

Chapter 4 Discussion
4.1 Clinical data analysis ………………………………………………47
4.2 Finite element method ……………………………………………… 50
4.3 Modeling rationale ……………………………………………………51
4.3.1 Model size ……………………………………………………………51
4.3.2 Miniscrew dimensions ………………………………………………52
4.3.3 Implanted depth …………………………………………………… 52
4.3.4 Bone quality …………………………………………………………52
4.3.5 Material complexity ……………………………………………… 53
4.3.6 Interface condition ……………………………………………… 55
4.3.7 Force ………………………………………………………………… 55
4.3.8 Convergence ………………………………………………………… 56
4.4 Contact interface …………………………….………………………57
4.5 Bone resorption related to stress/strain ………………………59
4.6 Miniscrew stability related to displacement ………………… 60
4.7 Bone effects to stress and displacement ……………………… 61
4.8 Miniscrew effects to stress and displacement …………………64
4.9 Force effects to stress and displacement ………………………66
4.10 Clinical implications ………………………………………………67
4.11 Limitations ……………………………………………………………69
4.12 Future works ………………………………………………………… 70

Chapter 5 Conclusions …………………………………………………… 71

References …………………………………………………………………… 72

Appendix I ……………………………………………………………………78
Appendix II …………………………………………………………………90
Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Vander Perre G. (1998) Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. Journal of Oral Rehabilitation 25:847–858.
Block MS, Hoffman DR. (1995) A new device for absolute anchorage for orthodontics. American Journal of Orthodontics and Dentofacial Orthopedics 107:251–258.
Brunski JB. (1992) Biomechanical factors affecting the bone-dental implant interface. Clinical Materials 10:153–201.
Chen F, Terada K, Hanada K, Saito I. (2005) Anchorage Effects of a Palatal Osseointegrated Implant with Different Fixation: A Finite Element Study. The Angle Orthodontist 75:593–601.
Cheng HC. (2004) Analysis of failure rate between K1 and MIA bony anchorage system. Abstract book of the 3rd Asian Implant Orthodontic Conference p.14.
Cheng SJ, Tseng IY, Lee JJ, Kok SH. (2004) A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. International Journal of Oral & Maxillofacial Implants 19:100–106.
Costa A, Raffainl M, Melsen B. (1998) Miniscrews as orthodontic anchorage: a preliminary report. The International Journal of Adult Orthodontics and Orthognathic Surgery 13:201–209.
Creekmore TD, Eklund MK. (1983) The possibility of skeletal anchorage. Journal of Clinical Orthodontics 17:266–269.
Eggers LH. (1952) Tissue reaction of bone upon mechanical stresses. American Journal of Orthodontics 38:453–459.
Frost HM. (2003) Bone's mechanostat: a 2003 update. The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology 275:1081–1101.
Frost HM. (1994) Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. The Angle Orthodontist 64:175–188.
Gainsforth BL, Higley LB. (1945) A study of orthodontic anchorage possibilities in basal bone. American Journal of Orthodontics and Oral Surgery 31:406–417.
Gallas MM, Abeleira MT, Fernandez JR, Burguera M. (2005) Three-dimensional numerical simulation of dental implants as orthodontic anchorage. European Journal of Orthodontics 27:12–16.
Gelgör IE, Buyukyilmaz T, Karaman AI, Dolanmaz D, Kalayci A. (2004) Intraosseous screw-supported upper molar distalization. The Angle Orthodontist 74:838–850.
Geng JP, Tan KB, Liu GR. (2001) Application of finite element analysis in implant dentistry: a review of the literature. Journal of Prosthetic Dentistry 85:585–598.
Giancotti A, Arcuri C, Barlattani A. (2004) Treatment of ectopic mandibular second molar with titanium miniscrews. American Journal of Orthodontics and Dentofacial Orthopedics 126:113–117.
Holmes DC, Loftus JT. (1997) Influence of bone quality on stress distribution for endosseous implants. Journal of Oral Implantology 23:104–111.
Holmgren EP, Seckinger RJ, Kilgren M, Mante F. (1998) Evaluating parameters of osseointegrated dental implant using finite element analysis: a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology 24:80–88.
Huang LH, Shotwell JL, Wang HL. (2005) Dental implants for orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics 127:713–722.
Ivanoff CJ, Sennerby L, Lekholm U. (1996) Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits. Clinical Oral Implants Research 7:120–127.
Kanomi R. (1997) Mini-implant for orthodontic anchorage. Journal of Clinical Orthodontics 31:763–767.
Katz JL, Meunier A. (1987) The elastic anisotropy of bone. Journal of Biomechanics 20:1063–1070.
Kim JW, Ahn SJ, Chang YI. (2005) Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics 128:190–194.
Kitagawa T, Tanimoto Y, Nemoto K, Aida M. (2005) Influence of cortical bone quality on stress distribution in bone around dental implant. Dental Materials Journal 24:219–224.
Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. (2004) Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clinical Oral Implants Research 15:401–412.
Kokich VG. (1996) Managing complex orthodontic problems: the use of implants for anchorage. Seminars in Orthodontics 2:153–160.
Lekholm U, Zarb GA. (1985) Patient selection and preparation. In: Branemark P-I, Zarb GA, Albrektsson T. Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence. p.199–209.
Lin JC. (2001) An innovative bone-borne anchorage for orthodontic anchorage. Abstract book of the 1st Asian Implant Orthodontic Conference p.10.
Liou EJ, Pai BC, Lin JC. (2004) Do miniscrews remain stationary under orthodontic forces? American Journal of Orthodontics and Dentofacial Orthopedics 126:42–47.
Liu JK, Huang CH, Chang CY, Hsu WY, Chung JH, Huang JS, Wong TY. (2004) Surgical complications of skeletal anchorage. Abstract book of the 3rd Asian Implant Orthodontic Conference p.58.
Masumoto T, Hayashi I, Kawamura A, Tanaka K, Kasai K. (2001) Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. European Journal of Orthodontics 23:15–23.
Melsen B, Lang NP. (2001) Biological reactions of alveolar bone to orthodontic loading of oral implants Clinical Oral Implants Research 12:144–152.
Melsen B, Verna C. (2005) Miniscrew implants: The Aarhus anchorage system. Seminars in Orthodontics 11:24–31.
Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T. (2005) Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospective, biomechanical, and imaging study. Bone 37:776–780.
Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. (2003) Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics 124:373–378.
Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. (2005) Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clinical Oral Implants Research 16:480–485.
O'Mahony AM, Williams JL, Spencer P. (2001) Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clinical Oral Implants Research 12:648–657.
Park HS. (1999) The skeletal cortical anchorage using titanium microscrew implants. Korean J Orthod 29:699–706.
Park HS, Kwon TG. (2004) Sliding mechanics with microscrew implant anchorage. The Angle Orthodontist 74:703–710.
Park HS, Lee SK, Kwon OW. (2005) Group distal movement of teeth using microscrew implant anchorage. The Angle Orthodontist 75:602–609.
Petrie CS, Williams JL. (2005) Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clinical Oral Implants Research 16:486–494.
Pierrisnard L, Renouard F, Renault P, Barquins M. (2003) Influence of implant length and bicortical anchorage on implant stress distribution. Clinical implant dentistry and related research 5:254–262.
Proffit WR. (1993a) Mechanical principles in orthodontic force control. In: Proffit WR, Fields HW, editors. Contemporary orthodontics. 2nd ed. Saint Louis: Mosby. p.289–315.
Proffit WR. (1993b) The biologic basis of orthodontic therapy. In: Proffit WR, Fields HW, editors. Contemporary orthodontics. 2nd ed. Saint Louis: Mosby. p.266–288.
Rangert B, Krogh PHJ, Langer B, Van Roekel N. (1995) Bending overload and implant fracture: a retrospective clinical analysis. International Journal of Oral & Maxillofacial Implants 10:326–334.
Rho JY, Ashman RB, Turner CH. (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. Journal of Biomechanics 26:111–119.
Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. (1984) Osseous adaptation to continuous loading of rigid endosseous implants. American Journal of Orthodontics 86:95–111.
Roberts WE, Nelson CL, Goodacre CJ. (1994) Rigid implant anchorage to close a mandibular first molar extraction site. Journal of Clinical Orthodontics 28:693–704.
Schwartz-Dabney CL, Dechow PC. (2003) Variations in cortical material properties throughout the human dentate mandible. American Journal of Physical Anthropology 120:252–277.
Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. (2005) Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. Journal of Prosthetic Dentistry 93:227–234.
Stegaroiu R, Watanabe N, Tanaka M, Ejiri S, Nomura S, Miyakawa O. (2006) Peri-implant stress analysis in simulation models with or without trabecular bone structure. International Journal of Prosthodontics 19:40–42.
Sugawara J, Umemori M, Mitani H, Nagasaka H, Kawamura H. (1998) Orthodontic treatment system for Class III malocclusion using titanium miniplate as an anchorage. Jpn J Orthod Soc 57:25–35.
Sugawara J, Daimaruya T, Umemori M, Nagasaka H, Takahashi I, Kawamura H, Mitani H. (2004) Distal movement of mandibular molars in adult patients with the skeletal anchorage system. American Journal of Orthodontics and Dentofacial Orthopedics 125:130–138.
Sütpideler M, Eckert SE, Zobitz M, An KN. (2004) Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone. International Journal of Oral & Maxillofacial Implants 19:819–825.
Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. (2003) Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional Finite element analysis. International Journal of Oral & Maxillofacial Implants 18:357–368.
Teixeira ER, Sato Y, Shindoi N. (1998) A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. Journal of Oral Rehabilitation 25:299–303.
Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. (1999) Skeletal anchorage system for open bite correction. American Journal of Orthodontics and Dentofacial Orthopedics 115:166–174.
Wehrbein H, Glatzmaier J, Mundwiller U, Diedrich P. (1996) The Orthosystem – a new implant system for orthodontic anchorage in the palate. Journal of Orofacial Orthopedics 57:142–153.
Weinstein AM, Klawitter JJ, Anand SC, Schuessler R. (1976) Stress analysis of porous rooted dental implants. Journal of Dental Research 55:772–777.
Willems G, Carels CE, Naert IE, van Steenberghe D. (1999) Interdisciplinary treatment planning for orthodontic-prosthetic implant anchorage in a partially edentulous patient. Clinical Oral Implants Research 10:331–337.
Yao CC, Lee JJ, Chen HY, Chang ZC, Chang HF, Chen YJ. (2005) Maxillary molar intrusion with fixed appliances and mini-implant anchorage studied in three dimensions. The Angle Orthodontist 75:754–760.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊