[1] Topol, Anna W., et al. "Three-dimensional integrated circuits." IBM Journal of Research and Development 50.4.5 (2006): 491-506.
[2] Patti, Robert S. "Three-dimensional integrated circuits and the future of system-on-chip designs." Proceedings of the IEEE 94.6 (2006): 1214-1224.
[3] Motoyoshi, Makoto. "Through-silicon via (TSV)." Proceedings of the IEEE 97.1 (2009): 43-48.
[4] Tu, K. N. "Reliability challenges in 3D IC packaging technology."Microelectronics Reliability 51.3 (2011): 517-523.
[5] http://ieknet.iek.org.tw/ , 2012/07/15
[6] Ko, Cheng-Ta, and Kuan-Neng Chen. "Low temperature bonding technology for 3D integration." Microelectronics Reliability 52.2 (2012): 302-311.
[7] Gueguen, Pierric, et al. "Physics of direct bonding: Applications to 3D heterogeneous or monolithic integration." Microelectronic Engineering 87.3 (2010): 477-484.
[8] Radu, Ionut, et al. "Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking." 3D Systems Integration Conference (3DIC), 2010 IEEE International. IEEE, 2010.
[9] Taibi, Rachid, et al. "Full characterization of Cu/Cu direct bonding for 3D integration." Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. IEEE, 2010.
[10] Ko, Cheng-Ta, and Kuan-Neng Chen. "Reliability of key technologies in 3D integration." Microelectronics Reliability (2012).
[11] Tang, Ya-Sheng, Yao-Jen Chang, and Kuan-Neng Chen. "Wafer-level Cu–Cu bonding technology." Microelectronics Reliability 52.2 (2012): 312-320.
[12] Jang, Eun-Jung, et al. "Annealing temperature effect on the Cu-Cu bonding energy for 3D-IC integration." Metals and Materials International 17.1 (2011): 105-109.
[13] Ohara, Yuki, et al. "10 µm fine pitch Cu/Sn micro-bumps for 3-D super-chip stack." 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on. IEEE, 2009.
[14] Lim, Dau Fatt, et al. "Achieving low temperature Cu to Cu diffusion bonding with self assembly monolayer (SAM) passivation." 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on. IEEE, 2009.
[15] Peng, L., et al. "Ultrafine pitch (6-µm) evolution of Cu-Cu bonded interconnects in 3D wafer-on-wafer stacking." Interconnect Technology Conference (IITC), 2012 IEEE International. IEEE, 2012.
[16] Wang, Pei-I., et al. "Low temperature wafer bonding by copper nanorod array."Electrochemical and Solid-State Letters 12.4 (2009): H138-H141.
[17] Wang, P., et al. "Low temperature copper-nanorod bonding for 3-D integration."Materials Research Society Symposium Proceedings. Vol. 970. Warrendale, Pa.; Materials Research Society; 1999, 2007.
[18] Kim, T. H., et al. "Room temperature Cu–Cu direct bonding using surface activated bonding method." Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films 21.2 (2003): 449-453.
[19] Shigetou, Akitsu, et al. "Bumpless interconnect of 6-μm pitch Cu electrodes at room temperature." Electronic Components and Technology Conference, 2008. ECTC 2008. 58th. IEEE, 2008.
[20] Ko, Cheng-Ta, and Kuan-Neng Chen. "Wafer-level bonding/stacking technology for 3D integration." Microelectronics reliability 50.4 (2010): 481-488.
[21] Huang, Y. P., et al. "Low Temperature Cu-Sn and Sn-Sn Bonding Development for 3D Interconnect Applications."
[22] http://www.sematech.org/meetings/archives/3d/8510/pres/Ramm.pdf , 2012/07/15
[23] Chang, Jing-Yao, et al. "Reliable Microjoints Formed by Solid–Liquid Interdiffusion (SLID) Bonding Within a Chip-Stacking Architecture."Components, Packaging and Manufacturing Technology, IEEE Transactions on2.6 (2012): 979-984.
[24] Klumpp, Armin, et al. "Vertical system integration by using inter-chip vias and solid-liquid interdiffusion bonding." Jpn. J. Appl. Phys 43.7A (2004): L829-L830.
[25] Pan, C. T., et al. "A low-temperature wafer bonding technique using patternable materials." Journal of Micromechanics and Microengineering 12.5 (2002): 611.
[26] Tominaga, Shigeru, et al. "Hybrid electrochemical mechanical planarization process for Cu dual-damascene through-silicon via using noncontact electrode pad." Japanese Journal of Applied Physics 49.5 (2010).
[27] Ko, Cheng-Ta, et al. "Wafer-to-wafer hybrid bonding technology for 3D IC."Electronic System-Integration Technology Conference (ESTC), 2010 3rd. IEEE, 2010.
[28] http://www.asjp.co.jp/ , 2012/07/15
[29] Watanabe, Naoya. "Room-Temperature Cu--Cu Bonding in Ambient Air Achieved by Using Cone Bump." Applied physics express 4.1 (2011): 6501.
[30] Iwanabe, K., et al. "Room-temperature microjoining using ultrasonic bonding of compliant bump." Low Temperature Bonding for 3D Integration (LTB-3D), 2012 3rd IEEE International Workshop on. IEEE, 2012.
[31] 郝好山,胡仁喜與康士廷,ANSYS 12.0/LS-DYNA非線性有限元分析 從入門到精通,機械工業出版社,北京,中國,2010。
[32] ANSYS 12.1 Help ,2012.
[33] LS-DYNA Keyword User’s Manual, Version 971, Vol.1-2, http://www.dynasupport.com/news/ls-dyna-971-manual-pdf, 2012/06/29.
[34] Lee, Chang-Chun, et al. "Reliability estimation and failure mode prediction for 3D chip stacking package with the application of wafer-level underfill."Microelectronic Engineering (2012).
[35] 莊昀達,材料覆被對IC封裝銅打線製程之影響,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2011。[36] http://aries.ucsd.edu/LIB/PROPS/PANOS/cu.html , 2012/07/15
[37] Budynas, Richard Gordon, and J. Keith Nisbett. Shigley''s mechanical engineering design. New York: McGraw-Hill, 2008.
[38] Liu, Yong, Scott Irving, and Timwah Luk. "Thermosonic wire bonding process simulation and bond pad over active stress analysis." Electronic Components and Technology Conference, 2004. Proceedings. 54th. Vol. 1. IEEE, 2004.
[39] Rusinko, A. "Analytical description of ultrasonic hardening and softening."Ultrasonics 51.6 (2011): 709-714.
[40] TIAN, Yan-hong, Ling-chao KONG, and Chun-qing WANG. "Review of Ultrasonic Wire Bonding Mechanism in Chip Interconnection [J]." Electronics Process Technology 1 (2007): 001.
[41] Srikanth, N., et al. "Critical study of thermosonic copper ball bonding." Thin Solid Films 462 (2004): 339-345.
[42] Levine, Lee. "The ultrasonic wedge bonding mechanism: Two theories converge." Proceedings of the International Symposium on Microelectronics. Reston, VA, USA: ISHM Press. 1995.
[43] Wang, Fuliang, and Yun Chen. "Modeling study of thermosonic flip chip bonding process." Microelectronics Reliability 52.11 (2012): 2749-2755.
[44] Wang, Fuliang, Lei Han, and Jue Zhong. "Stress-induced atom diffusion at thermosonic flip chip bonding interface." Sensors and Actuators A: Physical149.1 (2009): 100-105.
[45] Wang, Fuliang, and Lei Han. "Ultrasonic Effects in the Thermosonic Flip Chip Bonding Process." (2013): 1-1.
[46] Li, Jun-hui, et al. "Microstructural characteristics of Au/Al bonded interfaces."Materials characterization 58.2 (2007): 103-107.
[47] Li, Junhui, et al. "Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces." Journal of Physics D: Applied Physics 41.13 (2008): 135303.
[48] Siddiq, A., and Elaheh Ghassemieh. "Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects." Mechanics of Materials 40.12 (2008): 982-1000.
[49] 日月光金屬接合先進製程研發專案進度報告,2012/07/15。
[50] Yeh, Chang-Lin, Yi-Shao Lai, and Chin-Li Kao. "Transient simulation of wire pull test on Cu/low-K wafers." Advanced Packaging, IEEE Transactions on 29.3 (2006): 631-638.