跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王兆弘
研究生(外文):Chao-Hung Wang
論文名稱:探討可調控動脈硬化之周邊血血管前驅細胞的生物功能及辨識方法
論文名稱(外文):Biological Function and Identification of Peripheral Blood-derived Vascular Progenitor Cells Related to Atherosclerosis
指導教授:林幸榮林幸榮引用關係
指導教授(外文):Shing-Jong Lin
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:102
中文關鍵詞:內皮前軀細胞平滑肌前軀細胞動脈硬化
外文關鍵詞:Endothelial progenitor cellSmooth muscle progenitor cellAtherosclerosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
為了挑戰嚴重的心血管疾病,內皮前軀細胞正廣泛的進行中。然而,要想成功的運用內皮前軀細胞做治療,我們必須先對內皮前軀細胞的生物功能做全盤了解,我們在研究中試圖去探討與內皮前軀細胞純度、生物功能、動脈硬化潛力相關的因素。總共有73位新診斷有冠心病的病人及24位控制組正常人加入研究。在培養內皮前軀細胞共十代的研究中,我們探討代數與純度、生物功能、動脈硬化潛力的相關性,我們也探討動脈硬化風險因子與純度、生物功能、動脈硬化潛力的相關性。第三代到第五代的內皮前軀細胞與較老的代數相比,其純度較高、生物功能較好(一氧化氮的生成及管狀結構的形成)、動脈硬化潛力較差 (p<0.05)。在具焦在第三代內皮前軀細胞的研究中發現,具有動脈硬化風險因子較多的病人,以及那些已診斷有冠心病的病人,他們的內皮前軀細胞純度較差、生物功能較差(一氧化氮的生成及管狀結構的形成)、動脈硬化潛力較強 (p<0.05) 。另外,具有糖尿病、高血壓的病人,以及那些已診斷有冠心病的病人,他們的內皮前軀細胞動脈硬化遣力早已活化。有趣的是 Atorvastatin的使用可幫助那些已診斷有冠心病的病人,改善他們的內皮細胞一氧化氮合成酶的功能 (p<0.01)。結論是,代數和動脈硬化風險因子的多寡與內皮前軀細胞純度、生物功能、動脈硬化潛力非常相關。對具有多項動脈硬化風險因子的人,如果要應用其內皮前軀細胞做治療,必須要先評估其生物功能,並且適時給予處理。
平滑肌前軀細胞同時扮演了導致動脈硬化的好壞兩面,為了要釐清平滑肌前軀細胞在動脈硬化所扮演的角色,我們必須要研發出他們的細胞表面標記。我們使用基因陣列表現分析法去研發出平滑肌前軀細胞的細胞表面標記。實驗發現 PDGFR-alpha、CPM、 RAMP1、CA12、LRP1 是平滑肌前軀細胞專一性極高的五個細胞表面標記,調節平滑肌前軀細胞的移行、細胞外基質的形成、抗缺氧力、和抗發炎力。在動物實驗中,打入動物體內的人類週邊血單核球細胞,發現可分化成動脈硬化上的平滑肌細胞,這些平滑肌細胞都表現PDGFR-alpha、CPM、 RAMP1、CA12、LRP1。基於這些發現,我們發展了一個記數週邊血平滑肌前軀細胞的方法。我們發現,於不穩定心絞痛病人週邊血平滑肌前軀細胞的數目遠高於那些心血管正常的人。 而於急性心肌梗塞的病人,記數週邊血平滑肌前軀細胞的方法也具有相當的專一性。結論,各種源自週邊血的平滑肌前軀細胞的細胞表面標記,也同時具有各種與動脈硬化相關的功能。記數週邊血平滑肌前軀細胞的方法也提供了一個研究動脈硬化的平台。

Endothelial colony-forming cells (ECFCs) are undergoing extensive investigations to tackle certain deliberating cardiovascular diseases. However, the success of this approach depends on a thorough understanding of ECFC biology. This study sought to determine the factors associated the purity, biological function and activation potential of ex vivo expanded ECFCs. Seventy-three patients with newly diagnosed coronary artery disease (CAD) and 24 controls were studied. ECFCs were cultured for up to 10 passages to investigate changes in and the impact of coronary risk factors on ECFC biological functions and the atherogenic potential. Passage 3 to 5 of ECFCs exhibited higher endothelial phenotype expression and better biological functions in terms of nitric oxide secretion and tubular formation, but lower activation potentials, compared to later passages (P <0.05). Studies on passage 3 showed that endothelial phenotype expression and biological functions were impaired, and the activation potentials of the ECFCs were significantly upregulated in subjects with coronary risk factors and especially those with CAD (P<0.05). Furthermore, ECFCs were already activated before inflammatory stimulation in subjects with diabetes mellitus, hypertension and CAD. Atorvastatin upregulated the endothelial nitric oxide synthase expression of ECFCs in CAD patients (P<0.01) although not up to the baseline level of controls. In conclusion, the passage number and a variety of coronary risk factors were associated with the purity, biological function, and activation potential of ex vivo-expanded ECFCs. Functional assessments and manipulations of ECFCs have to be pursued in patients with extensive risk factors.
Smooth muscle progenitor cells (SMPCs) were intriguingly shown to act as a double-edged sword in the pathogenesis of atherosclerosis. To fully clarify the roles of SMPCs in atherosclerosis, a distinct panel of SMPC surface markers is mandatory to be developed. Microarray gene expression analyses were used to discover potential surface markers of SMPCs. In vitro and in vivo experiments documented that PDGFR-alpha, CPM, CA12, RAMP1, and LRP1 were 5 specific surface markers, regulating various SMPC functions including migration, extracellular matrix formation, resistance to hypoxia, and anti-inflammation. In SCID/NOD mice after femoral arterial wire-injury, injected human peripheral blood mononuclear cells contributed to substantial amount of neointimal alpha-smooth muscle actin-positive cells, co-expressing PDGFR-alpha, CPM, CA12, RAMP1, and LRP1. Based on these markers, a novel quantification assay was developed to enumerate circulating early SMPC (SMPCe). SMPCe numbers were higher in patients with unstable angina compared to those with normal coronary angiograms. In patients with acute ST-elevation myocardial infarction, different patterns of serial SMPCe changes were noted, related to different clinical presentations. In conclusion, surface markers of heterogeneous SMPCs exhibit various functions associated with atherosclerotic pathophysiology. Quantification of surface marker-defined SMPCs provides a platform for studying SMPCs in cardiovascular diseases.

目 錄


一. English Abstract 1
二. Chinese Abstract 3
三. List of Abbreviations 5
四. Introduction 7
五. Materials and Methods 25
六. Results 38
七. Discussion 48
八. Conculsion 57
九. Perspectives 58
十. References 59
十一. Figures and Tables 75
十二. Appendix 102
十三. Publications 102

References
1. Smith SC, Jr., Dove JT, Jacobs AK, Kennedy JW, Kereiakes D, Kern MJ, et al. ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines)--executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty). J Am Coll Cardiol 2001; 37: 2215-39.
2. Rodriguez A, Boullon F, Perez-Balino N, Paviotti C, Liprandi MI, Palacios IF. Argentine randomized trial of percutaneous transluminal coronary angioplasty versus coronary artery bypass surgery in multivessel disease (ERACI): in-hospital results and 1-year follow-up. ERACI Group. J Am Coll Cardiol 1993; 22: 1060-7.
3. Poon M, Badimon JJ, Fuster V. Overcoming restenosis with sirolimus: from alphabet soup to clinical reality. Lancet 2002; 359: 619-22.
4. Kornowski R, Lansky AJ. Current perspectives on interventional treatment strategies in diabetic patients with coronary artery disease. Catheter Cardiovasc Interv 2000; 50: 245-54.
5. Gaba MK, Gaba S, Clark LT. Cardiovascular disease in patients with diabetes: clinical considerations. J Assoc Acad Minor Phys 1999; 10: 15-22.
6. Savage MP, Douglas JS, Jr., Fischman DL, Pepine CJ, King SB, III, Werner JA, et al. Stent placement compared with balloon angioplasty for obstructed coronary bypass grafts. Saphenous Vein De Novo Trial Investigators. N Engl J Med 1997; 337: 740-7.
7. Kuntz RE, Gibson CM, Nobuyoshi M, Baim DS. Generalized model of restenosis after conventional balloon angioplasty, stenting and directional atherectomy. J Am Coll Cardiol 1993; 21: 15-25.
8. Kuntz RE, Safian RD, Levine MJ, Reis GJ, Diver DJ, Baim DS. Novel approach to the analysis of restenosis after the use of three new coronary devices. J Am Coll Cardiol 1992; 19: 1493-9.
9. Ellis SG, Savage M, Fischman D, Baim DS, Leon M, Goldberg S, et al. Restenosis after placement of Palmaz-Schatz stents in native coronary arteries. Initial results of a multicenter experience. Circulation 1992; 86: 1836-44.
10. Carrozza JP, Jr., Kuntz RE, Levine MJ, Pomerantz RM, Fishman RF, Mansour M, et al. Angiographic and clinical outcome of intracoronary stenting: immediate and long-term results from a large single-center experience. J Am Coll Cardiol 1992; 20: 328-37.
11. Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 1992; 19: 267-74.
12. Miyamoto T, Sasaguri Y, Sasaguri T, Azakami S, Yasukawa H, Kato S, et al. Expression of stem cell factor in human aortic endothelial and smooth muscle cells. Atherosclerosis 1997; 129 : 207-13.
13. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8: 403-9.
14. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5.
15. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-26.
16. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-9.
17. Zohlnhofer D, Klein CA, Richter T, Brandl R, Murr A, Nuhrenberg T, et al. Gene expression profiling of human stent-induced neointima by cDNA array analysis of microscopic specimens retrieved by helix cutter atherectomy: Detection of FK506-binding protein 12 upregulation. Circulation 2001; 103: 1396-402.
18. Zohlnhofer D, Richter T, Neumann F, Nuhrenberg T, Wessely R, Brandl R, et al. Transcriptome analysis reveals a role of interferon-gamma in human neointima formation. Mol Cell 2001; 7: 1059-69.
19. Ye L, Haider HK, Jiang SJ, Sim EK. Therapeutic angiogenesis using vascular endothelial growth factor. Asian Cardiovasc Thorac Ann 2004; 12: 173-81.
20. Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science 2001; 294: 564-7.
21. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 2001; 294: 559-63.
22. Bhattacharya V, McSweeney PA, Shi Q, Bruno B, Ishida A, Nash R, et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood 2000; 95: 581-5.
23. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001; 7: 1035-40.
24. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 2002; 90: 284-8.
25. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke 2002; 33: 1362-8.
26. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 2000; 106: 571-8.
27. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7: 430-6.
28. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434-8.
29. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 2001; 88: 167-74.
30. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001; 103: 2776-9.
31. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000; 97: 3422-7.
32. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106-12.
33. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001; 193: 1005-14.
34. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952-8.
35. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001; 108: 391-7.
36. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, et al. HMG-CoA reductase inhibitor mobilizes bone marrow--derived endothelial progenitor cells. J Clin Invest 2001; 108: 399-405.
37. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S. Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res 2000; 87: 540-2.
38. Smith SC, Jr., Dove JT, Jacobs AK, Kennedy JW, Kereiakes D, Kern MJ, et al. ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines)--executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty). J Am Coll Cardiol 2001; 37: 2215-39.
39. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-9.
40. Nakajima Y, Mironov V, Yamagishi T, Nakamura H, Markwald RR. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev Dyn 1997; 209: 296-309.
41. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408: 92-6.
42. Asahara T, Murohara T, Sullivan A, Silver M, van der ZR, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7.
43. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, et al. Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med 2001; 7: 738-41.
44. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med 2001; 7: 382-3.
45. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 2001; 98: 10344-9.
46. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5.
47. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8: 403-9.
48. Glaser R, Lu MM, Narula N, Epstein JA. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 2002; 106: 17-9.
49. Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci U S A 2003; 100: 4754-9.
50. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362-7.
51. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593-600.
52. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89: E1-7.
53. Dimmeler S, Zeiher AM. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J Mol Med 2004; 82: 671-7.
54. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95: 343-53.
55. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7.
56. Kwon SM, Suzuki T, Kawamoto A, Ii M, Eguchi M, Akimaru H, et al. Pivotal role of lnk adaptor protein in endothelial progenitor cell biology for vascular regeneration. Circ Res 2009; 104: 969-77.
57. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109: 4761-8.
58. Duan H, Cheng L, Sun X, Wu Y, Hu L, Wang J, et al. LFA-1 and VLA-4 involved in human high proliferative potential-endothelial progenitor cells homing to ischemic tissue. Thromb Haemost 2006; 96: 807-15.
59. Hristov M, Zernecke A, Liehn EA, Weber C. Regulation of endothelial progenitor cell homing after arterial injury. Thromb Haemost 2007; 98: 274-7.
60. Wang CH, Cherng WJ, Yang NI, Kuo LT, Hsu CM, Yeh HI, et al. Late-Outgrowth Endothelial Cells Attenuate Intimal Hyperplasia Contributed by Mesenchymal Stem Cells After Vascular Injury. Arterioscler Thromb Vasc Biol 2008; 28: 54-60.
61. Das H, Abdulhameed N, Joseph M, Sakthivel R, Mao HQ, Pompili VJ. Ex vivo nanofiber expansion and genetic modification of human cord blood-derived progenitor/stem cells enhances vasculogenesis. Cell Transplant 2009; 18: 305-18.
62. Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008; 28: 1584-95.
63. Patti G, Pasceri V, Melfi R, Goffredo C, Chello M, D'Ambrosio A, et al. Impaired flow-mediated dilation and risk of restenosis in patients undergoing coronary stent implantation. Circulation 2005; 111: 70-5.
64. Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, et al. Endothelial function predicts progression of carotid intima-media thickness. Circulation 2009; 119: 1005-12.
65. Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. Circulation 2007; 115: 2390-7.
66. Zhang Y, Ingram DA, Murphy MP, Saadatzadeh MR, Mead LE, Prater DN, et al. Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2009; 296: H1675-82.
67. Wang CH, Hsieh IC, Su Pang JH, Cherng WJ, Lin SJ, Tung TH, et al. Factors associated with purity, biological function, and activation potential of endothelial colony-forming cells. Am j physiol Regula integr compa physiol 2011; 300: R586-94.
68. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109: 4761-8.
69. Kwon SM, Suzuki T, Kawamoto A, Ii M, Eguchi M, Akimaru H, et al. Pivotal role of lnk adaptor protein in endothelial progenitor cell biology for vascular regeneration. Circ Res 2009; 104: 969-77.
70. Simper D, Mayr U, Urbich C, Zampetaki A, Prokopi M, Didangelos A, et al. Comparative proteomics profiling reveals role of smooth muscle progenitors in extracellular matrix production. Arterioscler Thromb Vasc Biol 2010; 30: 1325-32.
71. Zoll J, Fontaine V, Gourdy P, Barateau V, Vilar J, Leroyer A, et al. Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovasc Res 2008;77:471-480.
72. van Oostrom O, Fledderus JO, de Kleijn D, Pasterkamp G, Verhaar MC. Smooth muscle progenitor cells: Friend or foe in vascular disease? Curr Stem Cell Res Thera 2009; 4: 131-40.
73. Wang CH, Hsieh IC, Chen SJ, Wang JS, Cherng WJ, Chen CC, et al. Ve-cadherin(low)alpha-smooth muscle actin(+) component of vascular progenitor cells correlates with the coronary artery gensini score. Circ J 2012 (in press).
74. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth muscle progenitor cells in human blood. Circulation 2002; 106: 1199-204.
75. Sugiyama S, Kugiyama K, Nakamura S, Kataoka K, Aikawa M, Shimizu K, et al. Characterization of smooth muscle-like cells in circulating human peripheral blood. Atherosclerosis 2006; 187: 351-62.
76. Schober A, Hristov M, Kofler S, Forbrig R, Lohr B, Heussen N, et al. Cd34+cd140b+ cells and circulating cxcl12 correlate with the angiographically assessed severity of cardiac allograft vasculopathy. Euro Heart J 2011; 32: 476-84.
77. Metharom P, Liu C, Wang S, Stalboerger P, Chen G, Doyle B, et al. Myeloid lineage of high proliferative potential human smooth muscle outgrowth cells circulating in blood and vasculogenic smooth muscle-like cells in vivo. Atherosclerosis 2008; 198: 29-38.
78. Wang CH, Hsieh IC, Su Pang JH, Cherng WJ, Lin SJ, Tung TH, et al. Factors associated with purity, biological function, and activation potential of endothelial colony-forming cells. Am J of physiol Regu Integr Comp Physiol 2011; 300: R586-94.
79. Wang CH, Cherng WJ, Yang NI, Kuo LT, Hsu CM, Yeh HI, et al. Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arterioscler Thromb Vasc Biol 2008; 28: 54-60.
80. Yoshioka S, Fujiwara H, Yamada S, Nakayama T, Higuchi T, Inoue T, et al. Membrane-bound carboxypeptidase-m is expressed on human ovarian follicles and corpora lutea of menstrual cycle and early pregnancy. Mole Hu Repr 1998; 4: 709-17.
81. Kuwasako K, Cao YN, Nagoshi Y, Tsuruda T, Kitamura K, Eto T. Characterization of the human calcitonin gene-related peptide receptor subtypes associated with receptor activity-modifying proteins. Mole Pharma 2004; 65: 207-13.
82. Wang CH, Chen KT, Mei HF, Lee JF, Cherng WJ, Lin SJ. Assessment of mouse hind limb endothelial function by measuring femoral artery blood flow responses. J Vasc Surg 2011; 53: 1350-8.
83. Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004; 104: 3581-7.
84. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth Muscle Progenitor Cells in Human Blood. Circulation 2002; 106: 1199-204.
85. Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 2009; 114: 723-32.
86. Liu P, Zhou B, Gu D, Zhang L, Han Z. Endothelial progenitor cell therapy in atherosclerosis: a double-edged sword? Ageing Res Rev 2009; 8: 83-93.
87. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71-7,.
88. Guven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 2006; 48: 1579-87.
89. Wang CH, Ciliberti N, Li SH, Szmitko PE, Weisel RD, Fedak PW, et al. Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy. Circulation 2004; 109: 1392-400.
90. Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes FG. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation 2005; 112: 976-83.
91. Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002; 105: 1890-6.
92. Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res 2008; 102: 1319-30.
93. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89: E1-7.
94. Verma S, Buchanan MR, Anderson TJ. Endothelial Function Testing as a Biomarker of Vascular Disease. Circulation 2003; 108: 2054-9.
95. Assmus B, Honold J, Schächinger V, Britten MB, Fischer-Rasokat U, Lehmann R, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006; 355: 1222-32.
96. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, et al. Implantation of Bone Marrow Mononuclear Cells Into Ischemic Myocardium Enhances Collateral Perfusion and Regional Function via Side Supply of Angioblasts, Angiogenic Ligands, and Cytokines. Circulation 2001; 104: 1046-52.
97. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006; 113:1287-94.
98. Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al; REPAIR-AMI Investigators. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006; 355: 1210-21.
99. Hulthe J, Fagerberg B. Circulating oxidized LDL is associated with increased levels of cell-adhesion molecules in clinically healthy 58-year old men (AIR study). Med Sci Monit 2002; 8: CR148-52.
100. Glowinska B, Urban M, Peczynska J, Florys B. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes. Metabolism 2005; 54: 1020-6.
101. Kent JW Jr, Comuzzie AG, Mahaney MC, Almasy L, Rainwater DL, VandeBerg JL, et al. Intercellular adhesion molecule-1 concentration is genetically correlated with insulin resistance, obesity, and HDL concentration in Mexican Americans. Diabetes 2004; 53: 2691-5.
102. Wong V, Stavar L, Szeto L, Uffelman K, Wang CH, Fantus IG, et al. Atorvastatin induces insulin sensitization in Zucker lean and fatty rats. Atherosclerosis 2006; 184:348-55.
103. Yoshioka S, Fujiwara H, Yamada S, Nakayama T, Higuchi T, Inoue T, et al. Membrane-bound carboxypeptidase-m is expressed on human ovarian follicles and corpora lutea of menstrual cycle and early pregnancy. Mole Hu Repro 1998; 4: 709-7.
104. Kuwasako K, Cao YN, Nagoshi Y, Tsuruda T, Kitamura K, Eto T. Characterization of the human calcitonin gene-related peptide receptor subtypes associated with receptor activity-modifying proteins. Mole Pharma 2004; 5: 207-13.
105. Chiche J, Brahimi-Horn MC, Pouyssegur J. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. J Cellu Mol Med 2010; 14: 771-94.
106. Berthelemy N, Kerdjoudj H, Schaaf P, Prin-Mathieu C, Lacolley P, Stoltz JF, et al. O2 level controls hematopoietic circulating progenitor cells differentiation into endothelial or smooth muscle cells. PloS one 2009; 4: e5514.
107. Oksala N, Levula M, Pelto-Huikko M, Kytomaki L, Soini JT, Salenius J, et al. Carbonic anhydrases ii and xii are up-regulated in osteoclast-like cells in advanced human atherosclerotic plaques-tampere vascular study. Ann Med 2010; 42: 360-70.
108. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. Ldl receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88: 887-918.
109. Schulz S, Birkenmeier G, Schagdarsurengin U, Wenzel K, Muller-Werdan U, Rehfeld D, et al. Role of ldl receptor-related protein (lrp) in coronary atherosclerosis. Int J Cardio 2003; 92: 137-44.
110. Lillis AP, Mikhailenko I, Strickland DK. Beyond endocytosis: Lrp function in cell migration, proliferation and vascular permeability. Journal of thrombosis and haemostasis : JTH 2005; 3: 1884-93.
111. Gronwald RG, Seifert RA, Bowen-Pope DF. Differential regulation of expression of two platelet-derived growth factor receptor subunits by transforming growth factor-beta. J Biol Chem 1989; 264: 8120-5.
112. Ward MR, Agrotis A, Kanellakis P, Hall J, Jennings G, Bobik A. Tranilast prevents activation of transforming growth factor-beta system, leukocyte accumulation, and neointimal growth in porcine coronary arteries after stenting. Arterioscler Thromb Vasc Biol 2002; 22: 940-8.
113. Yu H, Stoneman V, Clarke M, Figg N, Xin HB, Kotlikoff M, et al. Bone marrow-derived smooth muscle-like cells are infrequent in advanced primary atherosclerotic plaques but promote atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31: 1291-9.
114. Guven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 2006; 48: 1579-87.
115. Albiero M, Menegazzo L, Fadini GP. Circulating smooth muscle progenitors and atherosclerosis. Trends Cardiovasc Med 2010; 20: 133-40.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top