跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 07:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅琪鉦
研究生(外文):Chi-Cheng Fu
論文名稱:利用石英晶體微天秤之雙頻量測分離質量和液體負載效應
論文名稱(外文):Measurement of Surface Mass and Liquid Loading by QCM with Dual Frequency Method
指導教授:林文澧林文澧引用關係
指導教授(外文):Win-Li Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:33
中文關鍵詞:石英晶體微天秤雙頻量測法質量負載液體負載
外文關鍵詞:quartz crystal microbalancedual frequency methodmass loadingliquid loadingQCM-D
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1032
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
利用石英晶體微天秤(quartz crystal microbalance, QCM) 做液相生物感測時,頻率變化包含兩部份,第一部份為質量負載效應:由QCM表面生物感測層和分析物特異性結合所產生;第二部分為液體負載效應:由待測溶液加入後液體狀態改變所產生。液體狀態改變所產生的干擾會降低質量負載測量的精確度,因此本研究目的為探討利用QCM雙頻量測法消除液體狀態改變所產生的干擾,藉由同時測量QCM基本頻率和三倍頻率的變化量,計算質量和液體負載效應,如此一來,液體狀態的改變只會反應於液體負載效應,而不會對質量負載效應造成干擾,使得質量負載效應的量測可以更精準。
利用QCM with dissipation monitoring(QCM-D)技術架構QCM雙頻量測系統。分別以鐵蛋白和緩衝溶液作為質量和液體負載效應的材料,進行質量和液體負載的實驗。實驗結果顯示,QCM可精確量測氣相鐵蛋白質量,且氣相鐵蛋白負載所造成的QCM三倍頻率變化量會比基本頻率變化量大3倍(相等於理論值),而在緩衝溶液中,鐵蛋白質量會增加約60﹪,而因鐵蛋白負載所造成的QCM三倍頻率變化量會比基本頻率變化量大2.7倍(相較於理論值3倍來得低)。就液體負載效應而言,緩衝溶液加入所造成的QCM三倍頻率變化量會比基本頻率大2倍(相較於理論值1.73來得高)。
因為理論值和實驗值之間差異會影響QCM雙頻量測法實際應用的準確度,所以未來將研究造成理論值和實驗值差異的原因。
Quartz crystal microbalance (QCM) is commonly used for biological measurements in liquid, which is with a challenge because multiple effects occur simultaneously. The total frequency change measured by QCM is resulted from the mass and liquid loading on the surface. The mass loading reflects the change of surface mass caused by bio-particles interaction, and the liquid loading reflects the change in liquid density and viscosity. The measurement accuracy of mass loading effect is interfered by added samples, which change liquid conditions, and this draws the limitation of QCM biosensor. The purpose of this study is to improve the accuracy of surface mass measurement by dual frequency method, which measures the fundamental and third harmonic frequency simultaneous to calculate the frequency changes caused by the mass and liquid loading effect.
QCM with dissipation monitoring (QCM-D) is used in this study to measure the fundamental and third harmonic frequency change simultaneously. We measure buffer only condition and increase the surface mass by ferritin adsorbing. The experiment of mass loading in air shows accurate ferritin mass can be obtained by QCM measurement, and the ratio between the change of third harmonic and that of fundamental frequency is 3, which equals to the theoretical value. In buffer, the ferritin mass increases about 60%, and the ratio decreases to 2.7, less than the theoretical value of 3. By measuring buffer without ferritin, the QCM frequency is decreased by , liquid loading effect itself and the ratio between the change of third harmonic and that of fundamental frequency is 2, more than the theoretical value of 1.73.
Because the accuracy of QCM dual frequency method is ratio dependent, we will study the factors causing deviations between experimental and theoretical results.
中文摘要…………………………………………………………i
英文摘要…………………………………………………………ii
目錄………………………………………………………………iii
圖表目錄…………………………………………………………v
一、前言……………………………………………………………1
1.1 QCM的基本原理…………………………………………1
1.1.1 無負載時的QCM…………………………………2
1.1.2 理想質量負載於QCM表面………………………3
1.1.3 液體負載於QCM表面……………………………4
1.1.4 理想質量和液體負載於QCM表面………………5
1.2液相生物感測實驗步驟…………………………………6
1.2.1 靜態注入分析法……………………………………6
1.2.2 流體注入分析法……………………………………7
1.3 液體狀態改變所產生的干擾及解決方法回顧…………7
1.3.1 參考晶體法…………………………………………8
1.3.2 相同狀態法…………………………………………9
1.3.3 雙調式QCM生物感測器…………………………10
1.3.4 緩衝溶液補償法…………………………………11
二、利用QCM雙頻量測法分離質量和液體負載效應…………12
2.1模型描述…………………………………………………12
2.2利用QCM雙頻量測法計算理想質量和液體負載效應…14
三、實驗……………………………………………………………16
3.1 QCM………………………………………………………16
3.1.1計算質量負載效應…………………………………16
3.1.2計算液體負載效應…………………………………17
3.2 測量系統…………………………………………………18
3.2.1 QCM雙頻量測系統………………………………19
3.2.2 恆溫系統…………………………………………23
3.3材料………………………………………………………24
3.4實驗程序…………………………………………………25
3.4.1 測量氣相質量負載的實驗程序…………………25
3.4.2 測量液相質量和液體同時負載的實驗程序……25
四、結果與討論…………………………………………………26
4.1氣相質量負載的實驗結果………………………………26
4.2 液相質量和液體負載的實驗結果………………………27
五、結論……………………………………………………………30
參考文獻…………………………………………………………31
[1] G. Sauerbrey, “Use of vibrating quartz for thin film weighing and microweighing,” Z. Phys., vol. 155, pp. 206—222, 1959 (in German).
[2] P. L. Konash, and G. J. Bastiaans, “Piezoelectric crystals as detectors in liquid chromatography,” Anal. Chem., vol 52, pp. 1929-1931, 1980.
[3] K. K. Kanazawa, and J. G. Gordon, “A liquid phase piezoelectric detector,” Anal. Chem., vol. 57, pp. 1771—1775, 1985.
[4] M. Thompson, C. L. Arthur, and G. K. Dhaliwal, “Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry,” Anal. Chem., vol. 58, pp. 1206- 1209, 1986.
[5] A. Janshoff, H. J. Galla, and C. Steinem, “Piezoelectric mass-sensing device as biosensors-an alternative to optical biosensors,” Angew. Chem., vol 39, pp. 4004—4032, 2000.
[6] M. Kaspar, H. Stadler, T. Weiß, and Ch. Ziegler, “Thickness shear mode resonators (“mass-sensitive devices”) in bioanalysis,” Fresenius J. Anal. Chem., vol. 366, pp. 602—610, 2000.
[7] C. K. O’Sullivan, and G. G. Guilbault, “Commercial quartz crystal microbalances — theory and applications,” Biosensors Bioelectron., vol. 14, pp. 663-670, 1999.
[8] D.S. Ballantine, et al., Acoustic wave sensors, Academic Press, San Diego, 1997.
[9] S. J. Martin, V. E. Granstaff, and G. C. Frye “Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading,” Anal. Chem., vol. 63, pp.2272—2281, 1991.
[10] S. J. Martin, G. C. Frye, A. J. Ricco, S. D. Senturia; “Effect of surface roughness on the response of thickness-shear mode resonators in liquids,” Anal. Chem., vol. 65, pp. 2910-2922, 1993.
[11] E. Uttenthaler, C. Kößlinger, and S. Drost, “Quartz crystal biosensor for detection of the African Swine Fever disease,” Anal. Chim. Acta, vol. 362, pp. 91-100, 1998.
[12] A. Näbauer, and P. Berg, “Biosensors based on piezoelectric crystal,” Sensors. Actuators, B, vol. 1, pp.508-509, 1990.
[13] N. Miura, H. Higobashi, G. Sakai, A. Takeyasu, T. Uda, and N. Yamazoe, “Pizoelectric crystal immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine,” Sensors Actuators, B, vol. 13-14, pp.188-191, 1993.
[14] C. Zhang, and G. Feng, “Contributions of amplitude measurement in QCM sensors,” IEEE Trans. Ultrason., Ferroel., Freq. Contr., vol. 43, pp. 942—947, 1996.
[15] C. Zhang, G. Feng, and Z. Gao , “Development of a new kind of dual modulated QCM biosensor,” Biosensors Bioelectron., vol. 12, pp. 1219—1225, 1997.
[16] J. Rickert, A. Brecht, and W. Go1pel, ”QCM Operation in Liquids: Constant Sensitivity during Formation of Extended Protein Multilayers by Affinity,” Anal. Chem., vol. 69, pp. 1441-1448, 1997.
[17] S. W. Lee , W. D. Hinsberg ,and K. K. Kanazawa, “Determination of the Viscoelastic Properties of Polymer Films Using a Compensated Phase-Locked Oscillator Circuit,” Anal. Chem., vol. 74, pp. 125-131, 2002.
[18] E. J. Calvo, E. S. Forzani, and M. Otero,” Study of Layer-by-Layer Self-Assembled Viscoelastic Films on Thickness-Shear Mode Resonator Surfaces,” Anal. Chem., vol. 74, pp. 3281-3286, 2002.
[19] H. L. Bandey, S. J. Martin, R. W. Cernosek, and A. R. Hillman, “Modeling the Responses of Thickness-Shear ModeResonators under Various Loading Conditions,” Anal. Chem., vol. 71, pp. 2205-2214, 1999.
[20] M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo “Quartz crystal microbalance setup for frequency and Q-factor rneasurements in gaseous and liquid environments,” Rev. Sci. Instrum., vol 66, pp. 3924-3930, 1995.
[21] M. Rodahl, and B. Kasemo, “A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance,” Rev. Sci. Instrum., vol 67, pp. 3238-3241, 1996.
[22] M. Rodahl, F. Höök, and B. Kasemo, “QCM Operation in Liquids: An Explanation of Measured Variations in Frequency and Q Factor with Liquid Conductivity,” Anal. Chem., vol. 68, pp. 2219-2227, 1996.
[23] F. Höök, M. Rodahl, P. Brzezinski, and B. Kasemo, “Energy Dissipation Kinetics for Protein and Antibody-Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance,” Langmuir, vol. 14, pp. 729-734, 1998.
[24] F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study,” Anal. Chem., vol. 73, pp. 5796-5804, 2001.
[25] M. Rodahl, F. Höök, C. Fredriksson, C.A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, “Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion,” Faraday Discuss., vol. 107, pp. 229-246, 1997.
[26] F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, “Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding,” Proc. Natl. Acad. Sci. USA, vol. 95, pp. 12271—12276, 1998.
[27] C. Fredriksson, S. Kihlman, M. Rodahl, and B. Kasemo, “The Piezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion,” Langmuir, vol. 14, pp. 248-251, 1998.
[28] A. S. Cans, F. Höök, O. Shupliakov, A. G. Ewing, P. S. Eriksson, L. Brodin, and O. Orwar, “Measurement of the Dynamics of Exocytosis and Vesicle Retrieval at Cell Populations Using a Quartz Crystal Microbalance,” Anal. Chem., vol. 73, pp. 5805-5811, 2001.
[29] H. Sota, H. Yoshimine, R. F. Whittier, M. Gotoh, Y. Shinohara, and Y. Hasegawa, Y. Okahata, “A Versatile Planar QCM-Based Sensor Design for Nonlabeling Biomolecule Detection,” Anal. Chem., vol. 74, pp. 3592-3598, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top