|
[1] G. Sauerbrey, “Use of vibrating quartz for thin film weighing and microweighing,” Z. Phys., vol. 155, pp. 206—222, 1959 (in German). [2] P. L. Konash, and G. J. Bastiaans, “Piezoelectric crystals as detectors in liquid chromatography,” Anal. Chem., vol 52, pp. 1929-1931, 1980. [3] K. K. Kanazawa, and J. G. Gordon, “A liquid phase piezoelectric detector,” Anal. Chem., vol. 57, pp. 1771—1775, 1985. [4] M. Thompson, C. L. Arthur, and G. K. Dhaliwal, “Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry,” Anal. Chem., vol. 58, pp. 1206- 1209, 1986. [5] A. Janshoff, H. J. Galla, and C. Steinem, “Piezoelectric mass-sensing device as biosensors-an alternative to optical biosensors,” Angew. Chem., vol 39, pp. 4004—4032, 2000. [6] M. Kaspar, H. Stadler, T. Weiß, and Ch. Ziegler, “Thickness shear mode resonators (“mass-sensitive devices”) in bioanalysis,” Fresenius J. Anal. Chem., vol. 366, pp. 602—610, 2000. [7] C. K. O’Sullivan, and G. G. Guilbault, “Commercial quartz crystal microbalances — theory and applications,” Biosensors Bioelectron., vol. 14, pp. 663-670, 1999. [8] D.S. Ballantine, et al., Acoustic wave sensors, Academic Press, San Diego, 1997. [9] S. J. Martin, V. E. Granstaff, and G. C. Frye “Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading,” Anal. Chem., vol. 63, pp.2272—2281, 1991. [10] S. J. Martin, G. C. Frye, A. J. Ricco, S. D. Senturia; “Effect of surface roughness on the response of thickness-shear mode resonators in liquids,” Anal. Chem., vol. 65, pp. 2910-2922, 1993. [11] E. Uttenthaler, C. Kößlinger, and S. Drost, “Quartz crystal biosensor for detection of the African Swine Fever disease,” Anal. Chim. Acta, vol. 362, pp. 91-100, 1998. [12] A. Näbauer, and P. Berg, “Biosensors based on piezoelectric crystal,” Sensors. Actuators, B, vol. 1, pp.508-509, 1990. [13] N. Miura, H. Higobashi, G. Sakai, A. Takeyasu, T. Uda, and N. Yamazoe, “Pizoelectric crystal immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine,” Sensors Actuators, B, vol. 13-14, pp.188-191, 1993. [14] C. Zhang, and G. Feng, “Contributions of amplitude measurement in QCM sensors,” IEEE Trans. Ultrason., Ferroel., Freq. Contr., vol. 43, pp. 942—947, 1996. [15] C. Zhang, G. Feng, and Z. Gao , “Development of a new kind of dual modulated QCM biosensor,” Biosensors Bioelectron., vol. 12, pp. 1219—1225, 1997. [16] J. Rickert, A. Brecht, and W. Go1pel, ”QCM Operation in Liquids: Constant Sensitivity during Formation of Extended Protein Multilayers by Affinity,” Anal. Chem., vol. 69, pp. 1441-1448, 1997. [17] S. W. Lee , W. D. Hinsberg ,and K. K. Kanazawa, “Determination of the Viscoelastic Properties of Polymer Films Using a Compensated Phase-Locked Oscillator Circuit,” Anal. Chem., vol. 74, pp. 125-131, 2002. [18] E. J. Calvo, E. S. Forzani, and M. Otero,” Study of Layer-by-Layer Self-Assembled Viscoelastic Films on Thickness-Shear Mode Resonator Surfaces,” Anal. Chem., vol. 74, pp. 3281-3286, 2002. [19] H. L. Bandey, S. J. Martin, R. W. Cernosek, and A. R. Hillman, “Modeling the Responses of Thickness-Shear ModeResonators under Various Loading Conditions,” Anal. Chem., vol. 71, pp. 2205-2214, 1999. [20] M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo “Quartz crystal microbalance setup for frequency and Q-factor rneasurements in gaseous and liquid environments,” Rev. Sci. Instrum., vol 66, pp. 3924-3930, 1995. [21] M. Rodahl, and B. Kasemo, “A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance,” Rev. Sci. Instrum., vol 67, pp. 3238-3241, 1996. [22] M. Rodahl, F. Höök, and B. Kasemo, “QCM Operation in Liquids: An Explanation of Measured Variations in Frequency and Q Factor with Liquid Conductivity,” Anal. Chem., vol. 68, pp. 2219-2227, 1996. [23] F. Höök, M. Rodahl, P. Brzezinski, and B. Kasemo, “Energy Dissipation Kinetics for Protein and Antibody-Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance,” Langmuir, vol. 14, pp. 729-734, 1998. [24] F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study,” Anal. Chem., vol. 73, pp. 5796-5804, 2001. [25] M. Rodahl, F. Höök, C. Fredriksson, C.A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, “Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion,” Faraday Discuss., vol. 107, pp. 229-246, 1997. [26] F. Höök, M. Rodahl, B. Kasemo, and P. Brzezinski, “Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding,” Proc. Natl. Acad. Sci. USA, vol. 95, pp. 12271—12276, 1998. [27] C. Fredriksson, S. Kihlman, M. Rodahl, and B. Kasemo, “The Piezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion,” Langmuir, vol. 14, pp. 248-251, 1998. [28] A. S. Cans, F. Höök, O. Shupliakov, A. G. Ewing, P. S. Eriksson, L. Brodin, and O. Orwar, “Measurement of the Dynamics of Exocytosis and Vesicle Retrieval at Cell Populations Using a Quartz Crystal Microbalance,” Anal. Chem., vol. 73, pp. 5805-5811, 2001. [29] H. Sota, H. Yoshimine, R. F. Whittier, M. Gotoh, Y. Shinohara, and Y. Hasegawa, Y. Okahata, “A Versatile Planar QCM-Based Sensor Design for Nonlabeling Biomolecule Detection,” Anal. Chem., vol. 74, pp. 3592-3598, 2002.
|