跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊宏
研究生(外文):Jyun-Hong Chen
論文名稱:鋁材多層金屬膜電磁波干擾遮蔽之研究
論文名稱(外文):EMI Shielding of Multi-layer Metallic Coatings on Aluminum Substrate
指導教授:楊聰仁楊聰仁引用關係
指導教授(外文):Tsong-Jen Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:120
中文關鍵詞:無電鍍多層膜電磁波干擾遮蔽
外文關鍵詞:AluminumAnodingElectroless PlatingMulti-layer CoaingElectromagnetic Interference ShieldingCorrosion Resistance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1245
  • 評分評分:
  • 下載下載:171
  • 收藏至我的研究室書目清單書目收藏:0
鋁合金為了防蝕常使用陽極處理或非鉻化成皮膜處理,在基材表面生成氧化層或磷酸鹽等皮膜,導電性降低容易引發電磁波干擾,本實驗以鋁陽極處理後所產生的多孔層吸附鎳離子,於氫氣氣氛下進行還原,具有催化活性的鎳,經由中性的無電鍍鎳硼鍍液析鍍無鎳硼鍍膜,再催化後續的無電鍍銅、鎳磷或鈷磷鍍層,製備單層或多層式複合層。在電磁波干擾遮蔽效率量測,頻率範圍為900~1900 MHz,以Co-P/Cu/Co-P/Cu/Ni-B/AAO/Al多層膜搭配最佳,厚度約1200 nm時,平均電磁波干擾遮蔽值可達62dB,在1900MHz時可達77.24 dB。由理論公式計算發現鍍膜以反射損失機構為主,吸收損失只能提供少許電磁波干擾遮蔽值。粗糙度分析以多層鍍膜最低,也間接影響電磁波遮蔽。耐蝕性測試發現由於不同金屬搭配的鍍層,容易引發加凡尼腐蝕,因此仍以單層鍍膜Ni-P/Ni-B/AAO/Al的耐蝕較佳。
Hydrogen reduction of absorbed nickel ions to nickel atoms on porous anodic aluminum oxide (AAO) . Electroless nickel-boron plating catalyzed by nickel atoms for the filling of porous AAO was performed. Further electroless nickel-phosphorus (Ni-P), copper (Cu), and/or cobalt-phosphorus (Co-P) platings were prepared for the electromagnetic interference(EMI) shielding and corrosion resistance tests. It has been shown that multi-layer coating with Co-P/Cu/Co-P/Cu/Ni-B/AAO/Al structure and total coating thickness 1200 nm possesses better EMI shielding effectiveness within the range from 900 to 1900 MHz.The average attenuation is about 62 dB.The EMI shielding effectiveness 77.24 dB can be obtained at 1900 MHz.Shielding effectiveness is mainly due to reflection of incoming electromagnetic radiation. The lower surface roughness prepared by the multi-layer coating influence EMI Shielding effectiveness indirectly. However, single-layer coating with structure of Ni-P/Ni-B/AAO/Al has better corrosion resistance based upon results of electrochemical analysis.
圖目錄.....................................VII
表目錄.....................................XIII
第一章 緒論 ..................................1
1-1前言.......................................1
1-2 電磁波遮蔽材料技術............................4
1-2-1金屬外殼................................4
1-2-2 表面金屬化外殼...........................4
1-2-3金屬填充塑膠複材外殼.......................5
1-2-4本質型導電高分子..........................6
1-3研究動機....................................7
1-4 研究目的....................................8
第二章 文獻回顧................................9
2-1陽極處理....................................9
2-1-1陽極處理原理.............................9
2-1-2陽極氧化膜結構與成長過程....................9
2-1-3陽極氧化膜形成機構........................11
2-1-3-1孔洞形成 ...........................11
2-1-3-2 穩定成長...........................13
2-1-4影響陽極處理因素.........................13
2-1-4-1操作電壓...........................13
2-1-4-2電解液溫度..........................14
2-1-4-3電解液種類..........................14
2-1-4-4鋁合金種類...............................15
2-1-5氧化鋁模板製作及應用......................16
2-2無電鍍.....................................18
2-2-1無電鍍原理..............................18
2-2-2無電鍍鎳...............................18
2-2-3無電鍍鈷...............................21
2-2-4無電鍍銅...............................21
2-3電磁波干擾遮蔽..............................23
2-3-1電磁波干擾遮蔽原理.......................23
2-3-2電磁波遮蔽材料...........................25
2-3-2-1導電填充物..........................25
2-3-2-2 鍍膜..............................27
2-3-3重要文獻回顧............................29
第三章 實驗步驟及方法.........................31
3-1實驗步驟...................................31
3-1-1前處理.................................31
3-1-2氧化鋁模板製作...........................31
3-1-3奈米多孔氧化鋁模板沈積鎳奈米金屬線...........33
3-1-4鍍膜...................................34
3-2儀器原理....................................37
3-2-1 掃描式電子顯微鏡.........................37
3-2-2低掠角X 光繞射儀.........................38
3-2-3頻譜分析儀..............................39
3-2-4 四點探針...............................40
3-2-5振動試樣磁力計...........................42
3-2-6掃描式探針顯微鏡.........................42
3-2-7 恆電位儀...............................43
第四章 結果與討論.............................45
4-1.前處理之影響................................45
4-1-1化學拋光...............................45
4-1-2退火處理...............................45
4-2處理電壓對氧化膜性質的變化.....................47
4-3奈米多孔氧化鋁模板沈積鎳奈米金屬線...............56
4-3-1氧化鋁模板吸附醋酸鎳經氫還原後之分析.........56
4-3-2鎳晶種經無電鍍鎳硼催化成長鎳奈米線分析........59
4-4鍍層分析.................................66
4-5鍍膜表面粗糙度分析.........................76
4-6厚度對導電性及磁性質影響.....................85
4-7電磁波干擾遮蔽分析...........................89
4-8厚度對耐蝕性影響............................105
第五章 結論.................................110
參考文獻....................................112
1.R.M. Gresham,“Metallization of Plastics for EMI/RFI Shielding”,Technical Paper FC85-755,Society of Manufacturing Engineers,1985.

2.莊東漢,“防電磁波干擾材料技術”,電子月刊, 第五卷, 第六期, (1999) 168-178.

3.Chun-Sheng Chen, Wei-Ren Chen, Shia-Chung Chen, Rean-Der Chien, “Optimum injection molding processing condition on EMI shielding effectiveness of stainless steel fiber filled polycarbonate composite”, International Communications in Heat and Mass Transfer, 35 (2008) 744–749.

4.莊東漢,林清彬,“防電磁波干擾之金屬化塑膠粒暨其射出成型產品”,科學發展月刊, 第28 卷, 第6期, (2000) 435-441.

5.黃繼遠,莫文偉,鄭銘章,“電磁波 vs 電磁波遮蔽材”, 科學發展,第362期, (2003)18-21.

6.柯賢文, 腐蝕及其防制, 全華科技圖書股份有限公司,(1995).

7.Z.F. Zhou, Y.C. Zhou , Y. Pan, X.G. Wang, “Growth of the nickel nanorod arrays fabricated using electrochemical deposition on anodized Al templates”, Materials Letters, 62 (2008) 3419–3421.

8.S.W. Lin, S.C. Chang, R.S. Liu, S.F. Hu, N.T. Jan, “Fabrication and magnetic properties of nickel nanowires”, Journal of Magnetism and Magnetic Materials, 282 (2004) 28–31.

9.C.G. Jin, W.F. Liu, C. Jia, X.Q. Xiang, W.L. Cai, L.Z. Yao, X.G. Lia,“High-filling,large-area Ni nanowire arrays and the magnetic”, Journal of Crystal Growth, 258 (2003) 337–341.

10.A. Saedi, M. Ghorbani,“Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template”, Materials Chemistry and Physics, 91 (2005) 417–423.

11.Xin Ren, ChuanH.Jiang, XinM.Huang, DongD.Li,“Fabrication and magnetic behavior of chemical deposited Ni–P nanowire and nanotube arrays”, Physica E , 41 (2009) 349–352.

12.Wei Wang, Nan Li, Xiaotian Li, Wangchang Geng, Shilun Qiu, “Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition”, Materials Research Bulletin, 41 (2006) 1417-1423.

13.Soo-Hwan Jeong, Hee-Young Hwang , Sun-Kyu Hwang , Kun-Hong Lee,“Carbon nanotubes based on anodic aluminum oxide nano-template”, Carbon, 42 (2004) 2073–2080.

14.Nguyen Duc Hoa, Nguyen Van Quy, Yousuk Cho and Dojin Kim, “An ammonia gas sensor based on non-catalytically synthesized carbon on an anodic aluminum oxide template”, Sensors and Actuators B, 127 (2007) 447–454.

15.Chien-Chon Chen, Chin-Guo Kuo and Chuen-Guang Chao, “Template assisted fabrication of Tin nanospheres by thermal expansion and rapid solidification process”, Japanese Journal of Applied Physics, 44 (2005) 1524–1528.

16.Po-Lin Chen, Cheng-Tzu Kuo, Tzeng-Guang Tsai, Bo-Wei Wu, Chiung-Chih Hsu, Fu-Ming Pana,“Self-organized titanium oxide nanodot arrays by electrochemical”, Applied Physics Letters, 82 (2003) 2796-2798.

17.張裕祺, “表面處理”, 高立出版社, (1994).

18.Sunil Kumar Thamida , Hsueh-Chia Chang,“Nanoscale pore formation dynamics during aluminum anodization”,Chaos, 12 (2002) 240-251.

19.S. Wernick, R. Pinner, P.G. Sheasby, “The surface treatment and finishing aluminum and its alloys”, 6th ed. (1987) .

20.表面處理工藝手冊編審委員會,“表面處理工藝手冊”,上海科學技術出版,(1992).

21.G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications”, Thin solid film, 297 (1997) 192-201.

22.G. E. Thompson, R. C. Furneaux, “Nucleation and Growth of Porous Anodic Film on Aluminum”, Nature, 272 (1978) 433.

23.G. E. Thompson, G. C. Wood, “Porous Anodic Film Formation on Aluminum”, Nature,290 (1981) 230.

24.H. Masuda, F. Hasegawa, S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution”, Journal of The Electrochemical Society, 144 (1997) 127-130.

25.G.D.Sulka, K.G. Parkola, “Temperature influence on well-ordered nanopore structures grown by anodization of aluminum in sulphuric acid”, Electrochimica Acta, 52 (2007) 1880-1888.


26.Hideki Masuda, Kenji Fukuda,“Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina”, Science, New Series, 268 (1995) 1466-1468.

27.M. Ghorbani, F. Nasirpouri, A. Iraji zad, A. Saedi,“On the growth sequence of highly ordered nanoporous anodic aluminium oxide”, 27 (2006), Pages 983-988.

28.Hideki Masuda, Kouichi Yada, Atsushi Osaka,“Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution”, Japanese Journal of Applied Physics, 37 (1998) 1340-1342.

29.Sachiko Ono, Makiko Saito, Hidetaka Asoh,“Self-ordering of anodic porous alumina formed in organic acid electrolytes”, Electrochimica Acta 51 (2005) 827–833.

30.B.A. Scott, Transactions of the Institute of Metal Finishing, 43 (1965) 1.

31.R.W. Thomas, Transactions of the Institute of Metal Finishing, 59 (1981) 97.

32.T. Aerts, Th. Dimogerontakis , I. De Graeve , J. Fransaer , H. Terryn, “Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film”, Surface & Coatings Technology, 201 (2007) 7310–7317.

33.R. L. Chiu, P.H. Chang,“The effect of anodizing temperature on anodic oxide formed on pure Al thin films”, Thin Solid Films, 260 (1995) 47-53.

34.Sachiko Ono, Makiko Saito, Miyuki Ishiguro, Hidetaka Asoh,“Controlling Factor of Self-Ordering of Anodic Porous Alumina”, Journal of The Electrochemical Society, 151 (2004) ,473-478.

35.Y.F. Kuang, J.P. Liu, Z.H. Hou, D.L. He,“Preparation and analysis of films an aluminum by high voltage anodization in phosphoric acid and sodium tungstate solution .”, Journal of Applied Electrochemistry ,31 (2001) 1267-1271.

36.S.S Abdel Rehim, H. H. Hass, M. A. Amin,“Galvanostatic anodization of pure Al in some aqueous acid solutions Part I:Growth kinetics, composition and morphological structure of porous and barrier-type anodic alumina films”, Journal of Applied Electrochemistry, 32 (2002) 1257-1264.

37.N.M. Yakovleva, L. Anicai, A. N. Yakovlev, L. Dima, E. Y. Khanina, M.Buda, Chupakhina, “Structure study of anodic films formed on aluminum in nitric acid electrolyte. ”,Thin Solid Films, 416 (2002) 16-23.

38.Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Yar-Ming Wang, Hong-Hsiang (Harry) Kuo, Sheila Kia,“Effect of alloy types on the anodizing process of aluminum.”, Surface & Coatings Technology, 200 (2006) 2634 – 2641.

39.J.P. Dasquet, D. Caillard, E. Conforto, J.P. Bonino, R. Bes, Thin Solid Films, 371 (2000) 183.

40.L.E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thompson, H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman, Electrochim. Acta 49 (2004) 3169.

41.L.E. Fratila-Apachitei, H. Terryn, P. Skeldon, G.E. Thompson, J. Duszczyk, L. Katgerman, Electrochim. Acta 49 (2004) 1127.

42.Hideki Masuda, Hidetaka Asoh, Kazuyuki Nishio, Masashi Nakao, Toshiaki Tamamura,“Conditions for Fabrication of Ideally Ordered Anodic Porous”, Journal of The Electrochemical Society, 148 (2001) 152-156.

43.Hideki Masuda, Haruki Yamada, Masahiro Satoh, and Hidetaka Asoh, Masashi Nakao, Toshiaki Tamamura,“Highly ordered nanochannel-array architecture in anodic alumina”, Applied Physics Letters, 71 (1997) 2770-2772.

44.Hidetaka Asoh, Sachiko Ono, Tomohito Hirose, Masashi Nakao, Hideki Masuda,“Growth of anodic porous alumina with square cells”, Electrochimica Acta, 48 (2003) 3171-3174.

45.Hideki Masuda, Hidetaka Asoh, Kazuyuki Nishio, Masashi Nakao, Toshiaki Tamamura,“Conditions for Fabrication of Ideally Ordered Anodic Porous”, Journal of The Electrochemical Society, 148 (2001)153-154.

46.M. Ghorbani, F. Nasirpouri, A. Iraji zad, A. Saedi,“On the growth sequence of highly ordered nanoporous anodic aluminium oxide”, Materials and Design, 27 (2006) 983–988.

47.Yong Lei, Weiping Cai, Gerhard Wilde,“Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks”, Progress in Materials Science, 52 (2007) 465–539.

48.G.O. Mallory , J.B. Hajdu,“Electroless Plating: Fundamentals and Applications”,AESF,Orlando,Florida, USA, (1990), Chap.1.

49.G.G. Gawrilov, Chemical(Electroless) Nickel-Plating, Portcullis Press Ltd.,Redhill, Surrey,(1979),Chap.1.

50.楊聰仁,“無電鍍鎳研究與應用現況”, 工業材料,第106期, (1995).

51.R.M Lukes,“The mechanism for the autocatalytic reduction of nickel by hypophosphite ion”, Plating, 51 (1964) 969.

52.廖文寬,“銅矽擴散阻障之鈷合金薄膜特性之研究”,私立朝陽科技大學/應用化學系/96/碩士論文.

53.Y. M. Lin and S. C. Yen, “Effects of Additives and Chelating Agents on Electroless Copper Plating,” Applied Surface Science, 178 (2001) 116-126.

54.金重勳, “磁性技術手冊”,中華民國磁性技術學會出版, (2002) 329.

55.Y. Gao , L. Huang, Z.J. Zheng, H. Li, M. Zhu,“The influence of cobalt on the corrosion resistance and electromagnetic shielding of electroless Ni–Co–P deposits on Al substrate.”, Applied Surface Science, 253 (2007) 947-9475.

56.楊聰仁,“逢甲大學材料系月刊”, (1987) 7-10.

57.Liang-Tau Chang, Tzu-I Chuang, Chih-Chao Yen, “Studies on the preparation and properties of EMI shielding materials”, Minghsin Journal, 32(2006) 91-102.

58.Salvatore Celozzi, Rodolfo Araneo,“Electromagnetic Shielding”, John Wiley & Sons, (2005), 1249-1252.

59.D. D. L. Chung, O.I. Fisun, A. N. Goltsov, V . N. Kadantsev, Y. K. Alexandrov,“Materials For Biological Safety Through Electromagneti
-c Shielding”,(2002).

60.葉中雄,曾衍彰,蔡文發,“電磁干擾與防護”,徐氏基金會出版, (1998).

61.Ling-ZHi Zhao, She-Jun Hu, Qin-Yu He,Wei-Shan Li, Jun-Fang Cheng, Qiang Ru, “Shielding principle and research progress of electromagnetic shielding materials”, Packaging Engineering, 27, (2006) 1.

62.Björn Hornbostel, Ulrich Leute, Petra Pötschke, Jochen Kotz, Daniela Kornfeld, Po-Wen Chiu, Siegmar Roth,“Attenuation of electromagnetic waves by carbon nanotube composites”, Physica E,40 (2008) 2425.

63.Siu-Ming Yuen, Chen-Chi M. Ma, Chia-Yi Chuang, Kuo-Chi Yu, Sheng-Yen Wu, Cheng-Chien Yang, Ming-Hsiung Wei,“Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites”, Composites Science and Technology 68 (2008) 963–968.

64.Petra Potschke, Arup R. Bhattacharyya, Andreas Janke,“Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate.”, Polymer, 44 (2003) 8061-8069.

65.Tang W, Santare MH, Advani SG,“Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films.”, Carbon, 41 (2003) 2779-2785

66.Min-Kang Seo, Jae-Rock Lee, Soo-Jin Park,“Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes.”, Mater Sci Eng A, 404 (2005) 79-84.

67.Kin-tak Lau, Mei Lu, Chun-ki Lam, Hoi-yan Cheung, Fen-Lin Sheng, Hu-Lin Li,“Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion”, Composites Science and Technology, 65 (2005) 719–725.

68.Kim Kwangsok, Cho Sung Jun, Kim Sung Tae, Chin In-Joo, Choi Hyoung Jin,“Formation of two-dimensional array of multiwalled carbon nanotubes in polystyrene/poly(methyl methacrylate) thin film.”, Macromolecules, 38 (2005) 10623-10626.

69.Zuoyong Dou , Gaohui Wu, Xiaoli Huang, Dongli Sun, Longtao Jiang,“Electromagnetic shielding effectiveness of aluminum alloy–fly ash composites”, Composites, 38 (2007) 186–191.

70.Gaohui Wu, Xiaoli Huang, Zuoyong Dou, Su Chen, Longtao Jiang,“Electromagnetic interfering shielding of aluminum alloy cenospheres composite.”, Journal Materials Science, 42 (2007) 2633-2636.

71.Sihai Wen, D.D.L. Chung,“Electromagnetic interference shielding reaching 70 dB in steel fiber cement”, Cement and Concrete Research , 4 (2004) 329–332.

72.J.-M. Chiou, Q. Zheng, D.D.L. Chung, “Electromagnetic interference shielding by carbon fiber reinforced cement”, Composites 20 (1989) 379– 381.

73.X. Fu, D.D.L. Chung,“Submicron carbon filament cement-matrix composites for electromagnetic interference shielding”, Cement and Concrete Research, 26 (1997) 1467-1472.

74.J.L. Huang, B.S. Yau, C.Y. Chen, W.T. Lo, D.F. Lii,“The electromagnetic shielding effectiveness of indium tin oxide films ”, Ceramics International, 27 (2001) 363-365.

75.Won Mok Kim, Dae Young Ku, In-kyu Lee, Yong Woon Seo, Byung-ki Cheong, Taek Sung Lee, In-ho Kim, Kyeong Seok Lee,“The electromagnetic interference shielding effect of indium–zinc oxide/silver alloy multilayered thin films”, Thin Solid Films, 473 (2005) 315– 320.

76.Eun Gyeong Han, Eun Ae Kim, Kyung Wha Oh,“Electromagnetic interference shielding effectiveness of electroless Cu-plated fabrics”,Synthetic Metals, 123 (2001) 469-476.

77.Dr. Quan-Sheng Song,“Electrochemical Measurement Techniques”,National Taiwan University Metal Hydride Lab,1-10.

78. 機械工程手冊/電機工程手冊編輯委員會,“金屬材料”, 五南圖書出版股份有限公司,( 2002).

79.C.T. Dervos, J. Novakovic, P. Vassiliou,“Electroless Ni-B and Ni-P coatings with high-fretting resistance for electrical contact applications”, IEEE Xplore, (2004) 281-288.

80.P.S. Kumar, P.K. Nair, “X-ray diffraction studies on the relative proportion and decomposition of amorphous phase in electroless Ni---B deposits”, Nanostructured Mater., Vol. 4, (2), pp. 183-198 (1994).

81.R. N. Duncan, “ Corrosion control with electroless nickel coatings, electroless plating symposium , American Electroplaters’ Society, St. Louis, March 1982.

82.J.P. O’Sullivan, G.C. Wood,“The morphology and mechanism of formation of porous anodic films on aluminum”,Mathematical and Physical Science, 317(1970), 511-543.

83.Grzegorz D. Sulka, Krzysztof G. Parkoa,“Anodising potential influence on well-ordered nanostructures formed by”, Thin Solid Films 515 (2006) 338 – 345

84.X.F. Pan, G.H. Mu, H.G. Shen, M.Y. Gu,“Preparation and microwave absorption properties of electroless Co–Ni–P coated strontium ferrite powder”, Applied Surface Science, 253 (2007) 4119.

85.J.S. Judge, J.R. Morrison, D.E. Speliotis, G. Bate,“Magnetic properties and corrosion behavior of thin electroless Co-P Deposits.”,Journal of the Electrochemical Society,112 (1965) 681-684.

86.K.R. Sriraman, S. Ganesh Sundara Raman, S.K. Seshadri,“Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys”, Materials Science and Engineering A, 460–461 (2007) 39–45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top