跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周芳如
研究生(外文):Fang Ru Chou
論文名稱:奈米化層狀金屬氧化物對酯化反應的催化
論文名稱(外文):Nanolization of Layered Compounds as Catalysts in Esterification
指導教授:唐宏怡
指導教授(外文):Horng Yi Tang
口試委員:廖明淵陳榮煇
口試日期:2015-01-28
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:奈米薄片插層層狀物固態酸催化
外文關鍵詞:NanosheetsIntercalationSolid acid catalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試以兩階段合成方式生成具有高比表面積的金屬氧化物奈米薄片。在第一階段時,分別將鄰苯二胺、正十六胺和三聚氰胺三種有機分子插層至HNbWO6 • 1.5H2O和HTaWO6 • 1.5H2O水合層狀金屬氧化物。在第二階段時,則是選擇甲苯,二氯甲烷和四氫呋喃三種不同極性的有機溶劑並利用超音波震盪,將有機-無機層狀金屬氧化合物的層狀物剝層,以得到奈米化的層狀薄片。最後,將所得到奈米薄片作為乙酸酯化反應之固體酸催化劑使用,並透過氣相層析進一步評估催化效果。
The present study is an attempt to generate a new way for the synthesis of two dimensional nanosheets which has a higher specific surface area and better catalytic properties. The synthesis was carried out in two steps, intercalation of the layered materials with organic entities followed by exfoliation in various nonpolar solvents. The layered oxide materials HNbWO6 • 1.5H2O and HTaWO6 • 1.5H2O were utilized as the precursors for the synthesis of nanosheets. The organic compounds- ortho-phenylenediamine, hexadecylamine and melamine were intercalated into the host materials at room temperature. Further ultra-sonication was carried out in nonpolar solvents- toluene, dichloromethane and tetrahydrofuran correspondingly. The obtained solid acid nanosheets were applied in the acetic acid esterification reaction as catalyst and the performance was further evaluated through gas chromatography.
目次
目次 III
圖次 V
表次 VIII
第一章 緒論 1
1.1研究動機 1
1.2層狀金屬氧化物結構 2
1.3水合層狀金屬氧化物(HNW / HTW)酸鹼度 6
1.4催化反應(catalytic reactions) 7
1.4.1酯化反應的催化 8
1.5有機-無機複合材料奈米化 10
1.5.1插層有機客體分子的選擇 11
1.5.2奈米剝層溶劑選擇(nano-exfoliation) 14
第二章 藥品與儀器 15
2.1藥品 15
2.2儀器 16
2.2.1粉末X光繞射儀(Powder X-ray Diffractometer, XRD) 16
2.2.2熱重分析儀(Thermogravimetric Analyzer, TGA) 16
2.2.3掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 17
2.2.4能量分散光譜儀(Energy Dispersive X-ray Spectroscopy, EDS) 17
2.2.5基質輔助雷射脫附離子化-飛行時間質譜儀(Matrix Assisted Laser Desorption / Ionization-Time of Flight Mass Spectrometer,MALDI-TOF MS) 18
2.2.6傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy,FTIR) 19
2.2.7動態光散射(Dynamic Light Scatteringy,DLS) 19
2.2.8氣相層析儀(Gas Chromatography,GC) 20
第三章 實驗流程 22
3.1 合成無機層狀化合物 23
3.1.1 合成LiMWO6 (M = Nb or Ta) 23
3.1.2 合成HNW / HTW 23
3.2 有機客體分子插層至無機層狀化合物 24
3.2.1 oPDA插層至HNW / HTW 24
3.2.2 C16插層至HNW / HTW 24
3.2.3 Mel插層至HNW / HTW 25
3.3 有機-無機複合材料奈米化 26
3.4 有機-無機複合材料料催化酯化反應 26
第四章 結果與討論 27
4.1有機-無機複合材料合成 27
4.1.1水合金屬層狀物 27
4.1.2有機客體插層反應 29
4.2有機-無機複合材料剝層反應(exfoliation) 47
4.3催化酯化反應實驗 55
4.3.1 乙酸乙酯定量 56
第五章 結論 60
第六章 參考文獻 61
第七章 附錄 65
附錄一 65
附錄二 67


圖次
圖1. 層狀氧化合物示意圖19 4
圖2. Fridel-Crafts alkylation示意圖 9
圖3. 酯化反應(esterification)反應機制28 9
圖4. 有機-無機複合材料奈米化示意圖29 10
圖5.(a)苯二胺同分異構物示意圖(b)正十六胺(c)三聚氰胺 13
圖6. 奈米化樣品與溶劑關係示意圖 14
圖7. GC 示意圖 20
圖8. LiNbWO6 / LiTaWO6高溫燒解 23
圖9. 合成HNW / HTW之步驟 23
圖10. PDA生成有機-無機復合材之步驟 24
圖11. C16生成有機-無機復合材之步驟 25
圖12. Mel生成有機-無機復合材之步驟 25
圖13. 奈米化流程 26
圖14. 乙酸酯化反應流程 26
圖15. (a)LiNbWO6(b)LiTaWO6(c)HNW(d)HTW 28
圖16. (a)HNW(b)oPDA-HNWa(c)C16-HNWa(d)Mel-HNWa複合材料之粉末繞射圖 31
圖17. (a)HTW(b)oPDA-HTWa(c)C16-HTWa(d)Mel-HTWa 複合材料之粉末繞射圖 31
圖18. (a)HNW(b)oPDA-HNWa(c)C16-HNWa(d)Mel-HNWa複合材料之FT-IR光譜圖 33
圖19. (a)HTW(b)oPDA-HTWa(c)C16-HTWa(d)Mel-HTWa複合材料之 FT-IR光譜圖 34
圖20. oPDA聚合反應機 36
圖21. (a)DHB基質(b)oPDA-HNWa 37
(c)C16-HNWa(d)MeL-HNWa 之MALDI-TOF-MS圖(以*表示基質) 37
圖22. (a)DHB基質(b)oPDA-HTWa 37
(c)C16-HTWa(d)MeL-HTW之 MALDI-TOF-MS圖(以*表示基質) 37
圖23. oPDA-HNWa / HTWa 以及 C16- HNWa / HTWa 以及 Mel- HNWa / HTWa有機-無機複合材料之TGA圖 40
圖24. oPDA插層層狀物可能排列方式示意圖 41
圖25. Mel插層層狀物可能排列方式示意圖31 42
圖26. C16插層層狀物可能排列方式示意圖 43
圖27. oPDA- HNWa /HTWa複合材料經JADE 5 軟體理論精算(藍實線)與實際繞射(黑實線)比對及密勒指數面 44
圖28. C16- HNWa /HTWa複合材料經JADE 5 軟體理論精算(藍實線)與實際繞射(黑實線)比對及密勒指數面 45
圖29. Mel- HNWa /HTWa複合材料經JADE 5 軟體理論精算(藍實線)與實際繞射(黑實線)比對及密勒指數面 46
圖30. (a)oPDA-HNWa(b)C16-HNWa(c)Mel-HNWa在toluene溶劑中的粒徑分佈 48
圖31. (a)oPDA-HNWa(b)C16-HNWa(c)Mel-HNWa 在DCM 溶劑中的粒徑分佈 49
圖32. (a)oPDA-HNWa(b)C16-HNWa (c)HNW在THF溶劑中的粒徑分佈 50
圖33. 以365 nm UV燈照射(a)THF(b)HNW(c)oPDA-HNWa(d)C16-HNWa(e)Mel-HNWa所產生的螢光影像 51
圖34. 以365 nm UV燈照射(a)THF(b)HTW(c)oPDA-HTWa(d)C16-HTWa(e)Mel-HTWa所產生的螢光影像 51
圖35. THF溶劑之NMR圖 52
圖36. HNW水合層狀物分散在THF溶劑之NMR圖 53
圖37. HTW水合層狀物分散在THF溶劑之NMR圖 54
圖38. 乙酸乙酯檢量線 55
圖39. HNW催化乙酸酯化反應GC量測圖 56


表次
表1. LiMWO6及HNW / HTW 2結構參數 5
表2. 有機物酸度係數(pKa) 12
表3. 胺類鹼性度大小之比較 29
表4. FT-IR 三種有機客體分子官能基 32
表5. 複合材料經JADE 5軟體理論精算結果 43
表6. 未奈米化HNW / HTW催化乙酸乙酯之GC定量 56
表7. 0.005 g有機-無機複合材料催化乙酸乙酯之GC定量 59


1. J. L. Fourquet ; A. Le Bail ; P. A. Gillet, LiNbNO6 : Crystal structure of its two allotropic forms. Mat. Res. Bull. 1988, 23, 1163-1170.
2. B. Lin ; L. He ; B. Zhu ; Y. Chen ; B. Gao, Visible-light photocatalytic activity of mesoporous nanohybrid assembled by tantalotungstate nanosheets and manganese ions. Catalysis Communications. 2012, 29, 166-169.
3. K. Takada ; H. Sakurai ; E. T. Muromachi ; F. Izumi ; R. A. Dilanian ; T. Sasaki, Superconductivity in two-dimensional CoO2 layers. Mat. Res. Bull. 1988, 23, 1163-1170.
4. L. Sebastian ; Gopalakrishan, Lithium ion mobility in metal oxides: a materials chemistry perspective. J. Journal of Materials Chemistry. 2003,13,433
5. N. K. Lazaridis ; T. A. Pandi ; K. A. Matis, Chromium(VI) Removal from Aqueous Solutions by Mg-Al-CO3 Hydrotalcite: Sorption-Desorption Kinetic and Equilibrium Studies. Ind. Eng. Chem. Res. 2004, 43, 2209-2215
6. T. N. Sairam ; B. Viswanathan, A study of effect of melt-intercalation of PEO in HNbWO6. J. Phys. Chem. Solids. 2002, 63, 317-322.
7. G. K. Prasad ; T. Takei ; Y. Yonesaki ; N. Kumada ; N. Kinomura, Hybrid nanocomposite based on NbWO6 nanosheets and polyaniline. Materials Letters. 2006, 60, 3727–3730.
8. C. Sanchez ; B. Julian ; P. Belleville ; M. Popall, Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 727, 3559–3592.
9. E. R. Hitzky ; M. Darder ; P. Aranda, Functional biopolymer nanocomposites based on layered solids. J. Mater. Chem. 2005, 15, 3650–3662.
10. F. Leroux ; C. T. Gueho, Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. J. Mater. Chem. 2005, 811, 3628–3642.
11. E. R. Hitzky ; M. Darder ; P. Aranda ; K. Ariga, Advances in biomimetic and nanostructured biohybrid materials. Adv. Mater. 2010, 22, 323–336.
12. M. Darder ; M. Colilla ; E. R. Hitzky ; Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater. 2003, 15, 3774-3780.
13. C. Tagusagawa ; A. Takagaki ; S. Hayashi ; K. Domen, Characterization of HNbWO6 and HTaWO6 Metal Oxide Nanosheet Aggregates As Solid Acid Catalysts. J. Phys. Chem. C. 2009, 113, 7831–7837.
14. V. Bhat ; J. Gopalakrishnan, HNbWO6 and HTaWO6 : Novel layered oxides related to the rutile structure. Synthesis and investigation of ion-exchange and intercalation behavior. Solid State Ionics. 1998, 26, 25-32.
15. H. B. Yao ; M. R. Gao ; S. H. Yu, Small organic molecule templating synthesis of organic–inorganic hybrid materials: their nanostructures and properties. Nanoscale, 2010, 2, 323–334.
16. N. Binesh ; V. Bhat ; S.V. Bhat, H MAS NMR study of protonic conduction in layered HNbWO6:xH2O (x = 1.5, 0.5). Solid State lonics. 1996 , 86-88 , 609-61.
17. N. Binesh ; V. Bhatb ; S.V. Bhat, Mechanism of protonic conduction in defect pyrochlore HNbWO6 : xH2O using MAS NMR. Solid State Ionics.1996, 86-88, 665-668.
18. G. Mangamma ; K. Shahi, Protonic conductivity of layered HNbW06 • 1.5H20 by impedance spectroscopy. Solid State Ionics. 1995, 76, 337-340.
19. J. Tronto ; A. C. Bordonal ; Z. Naal ; J. B. Valim, Conducting Polymers / Layered Double Hydroxides Intercalated Nanocomposites. Materials Science - Advanced Topics. 2013.
20. J. Wu ; S. Uchida ; Y. Fujishiro ; S. Yin ; T. Sato, Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites Journal of Photochemistry and Photobiology A: Chemistry. 1999, 128, 129–133.
21. J. Wu ; J. Lin ; S. Yinb ; T. Sato, Synthesis and photocatalytic properties of layered HNbWO6/ (Pt, Cd0.8Zn0.2S) nanocomposites. J. Mater. Chem. 2001, 11, 3343–3347.
22. L. Wang ; J. Wu ; M. Huang ; J. Lin, Synthesis and photocatalytic properties of layered intercalated materials HTaWO6/(Pt, Cd0.8Zn0.2S). Scripta Materialia. 2004, 50, 465–469.
23. J. Wu ; S. Yin ; Y. Lin ; J. Lin ; M. Huang ; T. Sato, Hydrothermal synthesis of HNbWO6/MO series nanocomposites and their photocatalytic properties. J. Mat. SCI. 2001, 36 , 3055 – 3059.
24. J. Wu ; J. Lin ; S. Yin ; T. Satob, Synthesis and photocatalytic properties of layered HNbWO6/ (Pt, Cd0.8Zn0.2S) nanocomposites. J. Mater. Chem., 2001, 11, 3343–3347.
25. J. Wu ; S. Uchida ; Y. Fujishiro ; S. Yin ; T. Sato, Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry. 1999, 128 , 129–133.
26. L. G. Wade, Organic chemistry. 2007.
27. G. D. Yadav ; A. A. Pujari, Friedel–Crafts acylation using sulfated zirconia catalyst. Green Chem. 1999,1, 69-74.
28.wiki :http://zh.wikipedia.org/wiki/%E9%85%AF%E5%8C%96%E5%8F%8D%E5%BA%94
29. R. Ma ; T. Sasaki, Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge-Bearing Functional Crystallites. Adv. Mater. 2010, 22, 5082–5104.
30. (a) A. Hayashi ; H. Nakayama ; M. Tsuhako, Intercalation of melamine into layered zirconium phosphates and their adsorption properties of formaldehyde in gas and solution phase. Solid State Sciences. 2009, 11, 1007–1015. (b) Sato, H.; Ohtani, H.; Harada, R.; Tsuge, S.; Kato, M.; Usuki, A., Polymer/silicate Interaction in Nylon 6-Clay Hybrid Studied by Temperature Programmed Pyrolysis Techniques. Polymer Journal 2006, 38
31. (a) Yao, H. B.; Gao, M. R.; Yu, S. H., Small organic molecule templating synthesis of organic-inorganic hybrid materials: their nanostructures and properties. Nanoscale 2010, 2 (3), 323-34; (b) Thompson, B. C.; Frechet, J. M., Polymer-fullerene composite solar cells. Angewandte Chemie 2008, 47 (1), 58-77; (c) Colfen, H.; Mann, S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie 2003, 42 (21), 2350-65. (d) J. Tronto ; A. C. Bordonal ; Z. Naal ; J. B. Valim, Conducting Polymers / Layered Double Hydroxides Intercalated Nanocomposites. Materials Science - Advanced Topics. 2013.
32. M. Honda ; Y. Oaki ; H. Imai, Hydrophobic Inorganic−Organic Composite Nanosheets Based on Monolayers of Transition Metal Oxides. Chem. Mater. 2014, 26, 3579−3585
33. (a) H. Sato ; H. Ohtani ; R. Harada ; S. Tsuge ; M. Kato ; A. Usuki, Polymer/silicate Interaction in Nylon 6-Clay Hybrid Studied by Temperature Programmed Pyrolysis Techniques. Polymer Journal. 2006, 38, 171–177.(b). K. Haraguchi ; T. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical and swelling/de-swelling properties. Advanced Materials. 2002, 14, 1120-1124.
34. (a). H. B. Yao ; M. R. Gao ; S. H. Yu, Small organic molecule templating synthesis of organic–inorganic hybrid materials: their nanostructures and properties. Nanoscale, 2010, 2, 323–334. (b). B. C. Thompson ; J. M. J. Frechet, Polymer–Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2008, 47, 58–77. (c). H. Colfen ; S. Mann, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed. 2003, 42, 2350 – 2365.
35. F. Cataldo, On the polymerization of P-phenylenediamine. Eur. Polym. J. 1996, 32, 43-50.
36. W. B. Euler ; A. H. Premasiri, Syntheses and characterization of poly(aminophenazines). Macromol. Chem. Phys. 1995, 196, 3655-3666.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top