|
1. J. L. Fourquet ; A. Le Bail ; P. A. Gillet, LiNbNO6 : Crystal structure of its two allotropic forms. Mat. Res. Bull. 1988, 23, 1163-1170. 2. B. Lin ; L. He ; B. Zhu ; Y. Chen ; B. Gao, Visible-light photocatalytic activity of mesoporous nanohybrid assembled by tantalotungstate nanosheets and manganese ions. Catalysis Communications. 2012, 29, 166-169. 3. K. Takada ; H. Sakurai ; E. T. Muromachi ; F. Izumi ; R. A. Dilanian ; T. Sasaki, Superconductivity in two-dimensional CoO2 layers. Mat. Res. Bull. 1988, 23, 1163-1170. 4. L. Sebastian ; Gopalakrishan, Lithium ion mobility in metal oxides: a materials chemistry perspective. J. Journal of Materials Chemistry. 2003,13,433 5. N. K. Lazaridis ; T. A. Pandi ; K. A. Matis, Chromium(VI) Removal from Aqueous Solutions by Mg-Al-CO3 Hydrotalcite: Sorption-Desorption Kinetic and Equilibrium Studies. Ind. Eng. Chem. Res. 2004, 43, 2209-2215 6. T. N. Sairam ; B. Viswanathan, A study of effect of melt-intercalation of PEO in HNbWO6. J. Phys. Chem. Solids. 2002, 63, 317-322. 7. G. K. Prasad ; T. Takei ; Y. Yonesaki ; N. Kumada ; N. Kinomura, Hybrid nanocomposite based on NbWO6 nanosheets and polyaniline. Materials Letters. 2006, 60, 3727–3730. 8. C. Sanchez ; B. Julian ; P. Belleville ; M. Popall, Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 727, 3559–3592. 9. E. R. Hitzky ; M. Darder ; P. Aranda, Functional biopolymer nanocomposites based on layered solids. J. Mater. Chem. 2005, 15, 3650–3662. 10. F. Leroux ; C. T. Gueho, Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. J. Mater. Chem. 2005, 811, 3628–3642. 11. E. R. Hitzky ; M. Darder ; P. Aranda ; K. Ariga, Advances in biomimetic and nanostructured biohybrid materials. Adv. Mater. 2010, 22, 323–336. 12. M. Darder ; M. Colilla ; E. R. Hitzky ; Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater. 2003, 15, 3774-3780. 13. C. Tagusagawa ; A. Takagaki ; S. Hayashi ; K. Domen, Characterization of HNbWO6 and HTaWO6 Metal Oxide Nanosheet Aggregates As Solid Acid Catalysts. J. Phys. Chem. C. 2009, 113, 7831–7837. 14. V. Bhat ; J. Gopalakrishnan, HNbWO6 and HTaWO6 : Novel layered oxides related to the rutile structure. Synthesis and investigation of ion-exchange and intercalation behavior. Solid State Ionics. 1998, 26, 25-32. 15. H. B. Yao ; M. R. Gao ; S. H. Yu, Small organic molecule templating synthesis of organic–inorganic hybrid materials: their nanostructures and properties. Nanoscale, 2010, 2, 323–334. 16. N. Binesh ; V. Bhat ; S.V. Bhat, H MAS NMR study of protonic conduction in layered HNbWO6:xH2O (x = 1.5, 0.5). Solid State lonics. 1996 , 86-88 , 609-61. 17. N. Binesh ; V. Bhatb ; S.V. Bhat, Mechanism of protonic conduction in defect pyrochlore HNbWO6 : xH2O using MAS NMR. Solid State Ionics.1996, 86-88, 665-668. 18. G. Mangamma ; K. Shahi, Protonic conductivity of layered HNbW06 • 1.5H20 by impedance spectroscopy. Solid State Ionics. 1995, 76, 337-340. 19. J. Tronto ; A. C. Bordonal ; Z. Naal ; J. B. Valim, Conducting Polymers / Layered Double Hydroxides Intercalated Nanocomposites. Materials Science - Advanced Topics. 2013. 20. J. Wu ; S. Uchida ; Y. Fujishiro ; S. Yin ; T. Sato, Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites Journal of Photochemistry and Photobiology A: Chemistry. 1999, 128, 129–133. 21. J. Wu ; J. Lin ; S. Yinb ; T. Sato, Synthesis and photocatalytic properties of layered HNbWO6/ (Pt, Cd0.8Zn0.2S) nanocomposites. J. Mater. Chem. 2001, 11, 3343–3347. 22. L. Wang ; J. Wu ; M. Huang ; J. Lin, Synthesis and photocatalytic properties of layered intercalated materials HTaWO6/(Pt, Cd0.8Zn0.2S). Scripta Materialia. 2004, 50, 465–469. 23. J. Wu ; S. Yin ; Y. Lin ; J. Lin ; M. Huang ; T. Sato, Hydrothermal synthesis of HNbWO6/MO series nanocomposites and their photocatalytic properties. J. Mat. SCI. 2001, 36 , 3055 – 3059. 24. J. Wu ; J. Lin ; S. Yin ; T. Satob, Synthesis and photocatalytic properties of layered HNbWO6/ (Pt, Cd0.8Zn0.2S) nanocomposites. J. Mater. Chem., 2001, 11, 3343–3347. 25. J. Wu ; S. Uchida ; Y. Fujishiro ; S. Yin ; T. Sato, Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry. 1999, 128 , 129–133. 26. L. G. Wade, Organic chemistry. 2007. 27. G. D. Yadav ; A. A. Pujari, Friedel–Crafts acylation using sulfated zirconia catalyst. Green Chem. 1999,1, 69-74. 28.wiki :http://zh.wikipedia.org/wiki/%E9%85%AF%E5%8C%96%E5%8F%8D%E5%BA%94 29. R. Ma ; T. Sasaki, Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge-Bearing Functional Crystallites. Adv. Mater. 2010, 22, 5082–5104. 30. (a) A. Hayashi ; H. Nakayama ; M. Tsuhako, Intercalation of melamine into layered zirconium phosphates and their adsorption properties of formaldehyde in gas and solution phase. Solid State Sciences. 2009, 11, 1007–1015. (b) Sato, H.; Ohtani, H.; Harada, R.; Tsuge, S.; Kato, M.; Usuki, A., Polymer/silicate Interaction in Nylon 6-Clay Hybrid Studied by Temperature Programmed Pyrolysis Techniques. Polymer Journal 2006, 38 31. (a) Yao, H. B.; Gao, M. R.; Yu, S. H., Small organic molecule templating synthesis of organic-inorganic hybrid materials: their nanostructures and properties. Nanoscale 2010, 2 (3), 323-34; (b) Thompson, B. C.; Frechet, J. M., Polymer-fullerene composite solar cells. Angewandte Chemie 2008, 47 (1), 58-77; (c) Colfen, H.; Mann, S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie 2003, 42 (21), 2350-65. (d) J. Tronto ; A. C. Bordonal ; Z. Naal ; J. B. Valim, Conducting Polymers / Layered Double Hydroxides Intercalated Nanocomposites. Materials Science - Advanced Topics. 2013. 32. M. Honda ; Y. Oaki ; H. Imai, Hydrophobic Inorganic−Organic Composite Nanosheets Based on Monolayers of Transition Metal Oxides. Chem. Mater. 2014, 26, 3579−3585 33. (a) H. Sato ; H. Ohtani ; R. Harada ; S. Tsuge ; M. Kato ; A. Usuki, Polymer/silicate Interaction in Nylon 6-Clay Hybrid Studied by Temperature Programmed Pyrolysis Techniques. Polymer Journal. 2006, 38, 171–177.(b). K. Haraguchi ; T. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical and swelling/de-swelling properties. Advanced Materials. 2002, 14, 1120-1124. 34. (a). H. B. Yao ; M. R. Gao ; S. H. Yu, Small organic molecule templating synthesis of organic–inorganic hybrid materials: their nanostructures and properties. Nanoscale, 2010, 2, 323–334. (b). B. C. Thompson ; J. M. J. Frechet, Polymer–Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2008, 47, 58–77. (c). H. Colfen ; S. Mann, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed. 2003, 42, 2350 – 2365. 35. F. Cataldo, On the polymerization of P-phenylenediamine. Eur. Polym. J. 1996, 32, 43-50. 36. W. B. Euler ; A. H. Premasiri, Syntheses and characterization of poly(aminophenazines). Macromol. Chem. Phys. 1995, 196, 3655-3666.
|