跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳熖煌
研究生(外文):Wu, Yann-Hwang
論文名稱:流體化床混燒灰與水淬高爐石作為膠凝材料之研究
論文名稱(外文):Study of CFB co-firing ash and ground granulated blast-furnace slag as cementitious materials
指導教授:黃然黃然引用關係
指導教授(外文):Huang, Ran
口試委員:張大鵬徐輝明陳豪吉葉為忠張建智
口試委員(外文):Chang, T.P.Hsu, H.M.Chen, H.J.Yieh, W.C.Chang, J.J.
口試日期:2015-07-25
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:96
中文關鍵詞:循環流體化床混燒飛灰水淬高爐石鹼激發劑膠凝材料抗壓強度
外文關鍵詞:circulating fluidized bedco-firing fly ashground granulated blast-furnace slagalkali activatorcementitious materialscompressive strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討混合燃燒煤及其他燃料後產生之混燒飛灰與水淬高爐石粉混合後之水泥質複合材料特性及再利用之可行性,利用混燒飛灰漿之膠結性質與水淬高爐石粉混合後評估其反應機理,同時探討複合材料用於水泥砂漿及水泥混凝土之性能。本研究試驗分三階段進行:混合水泥漿、混合水泥砂漿和混合水泥混凝土等。混合水泥漿及混合水泥砂漿之試驗變數為混燒飛灰與水淬高爐石粉依不同配比混合,混合水泥混凝土之試驗變數為不同配比混合及不同水膠比。
研究結果顯示:(1)混合水泥漿;Stoker鍋爐之混燒飛灰與水淬高爐石粉混合後無法膠結,可能為CaO含量不足,流體化床混燒飛灰與水淬高爐石粉混合之抗壓強度於14天為控制組之72.9%,但28天後開始下降;(2)混合水泥砂漿;30% 流體化床混燒飛灰與70% 水淬高爐石粉混合配比可得到最佳抗壓強度(約對照組72.4%),混燒飛灰含量超過40%後其抗壓強度於28天後呈現下降趨勢,可能為SO3含量隨混燒飛灰配比量增加導致強度減弱;(3)混合水泥混凝土;30% 混燒飛灰與70% 水淬高爐石粉混合配比於0.45水膠比為最佳混合配比其抗壓強度為28.47MPa、耐磨耗為3.56 x10-5cm、快速氯離子滲透率為288.9庫倫、透水率為4g及吸水率為4.7%。抗壓強度試驗結果亦可驗證此水泥質複合材料之反應機理為水淬高爐石粉加水後之水化反應呈現鹼性,再與含豐富CaO之流體化床混燒飛灰混合後可產生膠凝反應及足夠抗壓強度。

The purpose of this dissertation is to study the feasibility of circulating fluidized bed (CFB) co-firing fly ash (CF) mixing with ground granulated blast-furnace slag (GGBS) powder as an eco-binder. Co-firing fly ash is a non-recycled waste by-product derived from boiler co-firing bituminous coal and other fuels or biomasses. The co-firing fly ashes are not addressed in Taiwan standards for re-use in concrete as same as pulverized coal (PC) fly ash, which can be directly utilized in concrete due to the different physical and chemical properties. GGBS is a waste by-product of iron making process, which can be directly re-used in concrete to replace Portland cement. The study examines to re-cycle two wastes mixing together as cementitious materials and then to evaluate the reaction mechanism and characteristics of those composite materials. Three phases of experiments have been conducted as paste, mortar and concrete. The variation of experiments for paste and mortar were the various proportion ratios of co-firing fly ash and GGBS, and for concrete were the various water-binder ratios.
The experimental results shown that (1) paste: two stoker boilers co-firing fly ashes mixed with were unable to coagulate due to shortage of CaO content. Mixture of CF co-firing fly ash and GGBS compressive strength could reach 72.9% of control group at 14 days curing age and started to decline after 28 days curing age : (2) mortar: 30% CF: 70% GGBS was the optimum proportion ratio and its compressive strength at 56 days curing age could reach 72.4% of control group. The compressive strength of specimens F4S6 to F7S3 has the declined trend starting 28 days. The root cause may be higher content of SO3 in mixtures:(3) concrete; specimen F3S7 with 0.45 water-binder was the optimum mixture. Its compressive strength had 28.47MPa, abrasion coefficient had 3.56 x10-5 cm, RCTP has 288.9 coulombs, permeability was 4g and absorption had 4.7% respectively. It was also proven that the mechanism of those composite materials producing strength is due to higher CaO content of co-firing fly ash mixing with GGBS powder to have hydration reaction and then become gelation reaction with generating the strength.

CONTENTS
摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES V
LIST OF TABLES VIII
NOMENCLATURE X
ACKNOWLEDGMENT XI
CHAPTER 1: INTRODUCTION 1
1.1 Background and research motivation 1
1.2 Purpose of research 3
1.3 Scope of research 4
1.4 Research flow diagrams 5
1.5 Organization of content 6
CHAPTER 2: LITERATURE REVIEW 9
2.1 Portland cement manufacturing process 9
2.2 Portland cement composition 10
2.3 Blast-furnace slag 11
2.4 Cogeneration system in paper mill plant 14
2.5 Residues of boiler combustion 15
2.6 Circulating fluidized bed combustion 19
2.7 Co-firing fly ash 20
2.8 Discussion 23
CHAPTER 3: EXPERIMENTAL PROGRAMS 25
3.1 Test plan 25
3.2 Process of sustainable waste material production 27
3.3 Materials, mixtures proportion and test procedures 32
3.4 Compliance of test requirements for paste, mortar and concrete 53
CHAPTER 4: RESULTS AND DISCUSSION 54
4.1 Paste (Phase I) 54
4.2 Mortar (Phase II) 64
4.3 Concrete (Final phase) 80
CHAPTER 5: CONCLUSIONS AND SUGGESTIONS 86
5.1 Conclusions 86
5.2 Suggestions for future research 88
REFERENCE 89


REFERENCE

1. Comparison of Life Cycle Green House Gas Emissions of Various Electricity; Generation Source. World Nuclear Association: London, UK, 2011.

2. Emission from the Cement Industry; The Earth Institute Columbia University, New York, NY, USA, 2012.

3. Tsai, CJ, Huang Ran, Lin, WT, Wang, HN, Mechanical and cementitious characteristics of ground granulated blast furnace slag and basic oxygen furnace slag blended mortar. J. Mater, Des. 2014. 60: p. 267–273.

4. ASTM C618-12a. Standard specification for coal fly ash and raw or calcines natural pozzolan for use as a mineral admixture in concrete. ASTM: West Conshohocken, PA, USA, 2012.

5. Biomass Conversion Technology, 2006. Available online: http://www.epa.gov/chp/documents/biomass_chp_catalog_part5.pdf (accessed on 1 October 2014).

6. Bowman, J., A comparison of a biomass 50MW modern stoker fired system and a bubbling fluidized bed system. Biomass combustion technologies. Presented at POWER-GEN International, Las Vegas, NV, USA, 8–10 December 2009.

7. Tkaczewska, E. and Małolepszy, J., Hydration of coal-biomass fly ash cement. Constr. Build. Mater. 2009. 23: p. 2694–2700.

8. World Steel Association: Statistics, 5 October 2013. Available online: https://www.worldsteel.org/ (accessed on 1 October 2014).

9. Tsai, CJ, Huang Ran, Lin, WT, Chiang, HW, Using GGBOS as the alkali activators in GGBS and GGBOS blended cements, Constr. Build. Mater, 2014. 70: p. 501–507.

10. Shen, DH, Wu, CM, Du, JC, Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr. Build. Mater, 2009. 23: p. 453–461.
11. Statistic Data Report 2005; Environmental Protection Administration, Executive Yuan: Taipei, Taiwan, 2005.

12. Klee, H., The Cement Sustainability Initiative; World Business Council for Sustainable Development (WBCSD): Washington, DC, USA, 2009.

13. Kumar, S.,Kumar, R., Bandopadhyay, A., Alex, T.C., Kumar, Ravi, Das, SK, Mehrotra, SP, Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of Portland slag cement. Cem. Concr. Compos, 2008. 30: p. 679–685.

14. Osborne, G., Durability of Portland blast-furnace slag cement concrete. Cem. Concr. Compos, 1999. 21: p.11–21.

15. Zhang, TS, Yu, Q., Wei, JX, Zhang, PP, Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour. Conserv. Recycl, 2011. 56: p. 48–55.

16. Monshi, A. and Asgarani, M., Producing Portland cement from iron and steel slags and limestone. Cem. Concr. Res, 1999. 29: p.1373–1377.

17. Bellmann, F. and Stark, J., Activation of blast furnace slag by a new method. Cem. Concr. Res, 2009. 39: p. 644–650.

18. Tkaczewska, E. and Łójet, R., Coal-biomass fly ashes for cement production of CEM II/A-V 42.5R. Constr. Build. Mater, 2012. 28: p. 633–639.

19. Wang, S., Miller, A., Llamazos, E., Fonseca, F., Baxter, L., Biomass fly ash in concrete: Mixture proportioning and mechanical properties. J. Fuel, 2008. 87: p. 365–371.

20. Rajammaa, R., Ball RJ, Tarelhoc, L, Allenb, Labrinchad, JA, Victor M. Ferreiraa, VM, Biomass fly ash in cement-based materials. J. Hazard. Mater, 2009. 172: p. 1049–1060.

21. Wang, S. and Baxter, L., Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability. Fuel Process Technol, 2007. 88: p. 1165–1170.

22. Huntzinger, D. and Eatmon, T., A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 2009.17: p. 668–675.

23. ASTM C150. Standard Specification for Portland Cement. ASTM: West Conshohocken, PA, USA, 2011.

24. http://en.wikipedia.org/wiki/Environmental_impact_of_concrete.

25. ASTM C989-14. Standard Specification for Slag Cement for use in Concrete and Mortar. ASTM: West Conshohocken, PA, USA, 2014.

26. Puetas, F., MartõÂnez-RamõÂrez, S., Alonso, S.,VaÂzquez, T.,Alkali-activated fly ash/slg cement strength behavior and hydration products. Cement and Concrete Research, 2000. 30: p1625-1632.

27. Teng, S., Lim,TYD., Divsholiet, BS., Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag. Construction and Building Materials, 2013. 40(0): p. 875-881.

28. Luo, R., Cai, YB, Wang, CY, Huang, X., Study of chloride binding and diffusion in GGBS concrete. Cement and Concrete Research, 2003. 33(1): p. 1-7.

29. Bernbt, M., Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials, 2009. 23(7): p. 2606-2613.

30. Siddique, R. and R. Bennacer, Use of iron and steel industry by-product (GGBS)
in cement paste and mortar. Resources, Conservation and Recycling, 2012.
69(0): p. 29-34.

31. Tsai, C., Propertities of Ground Granulated Basic Oxygen Furnace Slag and Blast-Furnace Slag Mixture as Cementitious Materials, a dissertation, National Taiwan Ocean University, Taiwan, R.O.C., 2015; 28-29.

32. Environmentally friendly production of pulp and paper, Pratima Bajpai, John Wiley &; Sons, Inc., 2010, Canada.

33. Combustion fossil power, Combustion Engineering, Inc., 1991.

34. Chi, M., Strength and drying shrinkage characteristics of alkali-activated fly ash/slag paste and mortar, Advances in Civil Engineering, 2012, Article ID 579732, 7 pages.

35. Kelham, S., Influence of cement composition on volume stability of mortar, International Concrete Abstracts Portal, 1999. 177: p. 27-46.

36. Collins, F. and J.G. Sanjayan, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 2000. 30(9): p. 1401-1406.

37. Jaturapitakkul, C., Kiattikomol, K., Sata, V., Leekeeratikulet, T., Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete. Cemen and Concrete Research, 2004. 34 : p. 549-555.

38. Papayianni, I. and Valliasis, t., Heat deformations of fly ash concrete. Cement &; Concrete Composites, 2005. 27: p. 249–254.

39. Tkaczewska, E. and Małolepszy, j., Hydration of coal–biomass fly ash cement. Construction and Building Materials, 2009. 23: p. 2694–2700.

40. Namagga, C. and Atadero, R., Optimization of fly ash in concrete: high lime fly ash as a replacement for cement and fillermaterial. 2009 world of coal ash, May 4-7, 2009 in Lexington, KY, USA, http://www.flyash.info/

41. Hsu, H., Cheng, A., Chao, SJ., Huang, Ran, Chen, TC., and Lin, KL., Controlled low-strength materials containing bottom ash from circulating fluidized bed combustion. International journal pavement research technical paper, 2009. Vol. 2:No.6.

42. Benson, C., and Bradshaw, S., User guideline for coal bottomash and boiler slag in green infrastructure construction. Dec. 2011, Recycled Materials Resource Center. University of Wisconsin, Madison, WI, USA.

43. Kim, B. et al., Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. Journal of Geotechnical and Geoenvironmental Engineering, 2005. 131(7): p. 914-24.

44. Kumar, S. and Vaddu, P., Time dependent strength and stiffness of PCC bottom ash-bentonite mixtures. Soil and sediment contamination, 2004.13(4): p.405-13.

45. Ksaibati, K. and Sayiri, S., Utilization of Wyoming bottom ash in asphalt mixes. Department of Civil &; Architectural Engineering, University of Wyoming: 2006 March.

46. Chen, X.et al., The influence of SO3 content on the strength of cement-fly ash stabilized crushed-stone. In Proceedings of the 4th Asian Regional Conference on Geosynthetic, Shanghai, China, 17–20 June 2008; Springer: Berlin, Germany, 2009, p. 398–402.

47. San-José, J. et al., The performance of steel-making slag concretes in the hardened state. Mater. Des, 2014. 60: p. 612–619.

48. ASTM C109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM: West Conshohocken, PA, USA, 2013.

49. ASTM C595/C595M-13. Standard Specification for Blended Hydraulic Cements. ASTM: West Conshohocken, PA, USA, 2013.

50. Lu, G. et al., Impact of co-firing coal and biomass on flame characteristics and stability. Fuel, 2008. 87: p. 1133–1140.

51. Climate Submit 2014, Action Area: Energy, http://www.un.org/climatechange/summit/wp-content/uploads/sites/2/2014/07/Climate-Summit-Action-Areas_Energy.pdf

52. Pettersson, A. et al., Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes, Journal of Fuel, 2008. 87: p.3183–3193.

53. Yue, G., et al., Structure and performance of a 600MWe supercritical CFB boiler with water cooled panels. Key laboratory for thermal science and power engineering of ministry of education, department of thermal engineering, Tsinghua University, Beijing, China.

54. Wang, S. et al., Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Journal of Fuel, 2008. 87: p. 365-371.

55. Wang, C. et al., Carbonation of fly ash in oxy-fuel CFB combustion. Journal of Fuel, 2008. 87: p. 1108–1114.

56. Sheng, G. et al., Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke. Cement and Concrete Research, 2007. 37:p. 871 – 876.

57. Dung, N. et al., Hydration process and compressive strength of slag-CFBC fly ash materials without Portland cement. J. Mater. Civ. Eng., 2014. doi:10.1061/ (ASCE)MT.1943-5533.0001177).

58. Izquierdo, M. et al., Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel, 2008. 87: p. 1958–1966.

59. Rajamma, R. et al., Characterisation and use of biomass fly ash in cement-based materials. Journal of Hazardous Materials, 2009. 172: p. 1049 - 1060.

60. Wang, S. and Baxter, L., Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability. Fuel Processing Technology, 2007. 88: p. 1165 – 1170.

61. Fu, X. et al., The physical–chemical characterization of mechanically-treated CFBC fly ash. Cement &; Concrete Composites, 2008. 30: p. 220–226.

62. Dung, N. et al., Engineering and sulfate resistance properties of slag-CFBC fly ash paste and mortar. Construction and Building Materials, 2014. 63: p.40–48.

63. ASTM C593. Standard Specification for Fly Ash and Other Pozzolans for Use with Lime for Soil Stabilization. ASTM: West Conshohocken, PA, USA, 2011.

64. NIEA R201.14C, 事業廢棄物毒性特性溶出程序事業廢棄物毒性特性溶出程序, 中華民國98年8月10日環署檢字第0980070269號公告

65. http://en.wikipedia.org/wiki/X-ray_fluorescence

66. ASTM C778-13. Standard Specification for Fly Ash and Other Pozzolans for Use with Lime for Soil Stabilization. ASTM: West Conshohocken, PA, USA, 2011.

67. ASTM C39. Standard Test Method for Compressive Strength of Cylindrical
Concrete Specimens. ASTM: West Conshohocken, PA, USA, 2014.

68. Wu, Y. et al., Recycling of sustainable co-firing fly ashes as an alkali activator for GGBS in blended cement. Materials, 2015. 8: p.784-798.

69. Dung, N. et al., Performance evaluation of an Eco-binder made with slag and CFBC fly ash. J. Mater. Civ. Eng, 2014. 26. DOI: 10.1061/ (ASCE) MT.1943-5533.0001019.

70. Wu, Y. et al., Utilizing residues of CFB co-combustion of coal, sludge and TDF as an alkali activator in eco-binder. Construction and Building Materials, 2015. 80: p.69-75.

71. Hua, C. et al., Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites. Materials Characterization, 2014. 95: p. 129–139.

72. O’connell, M. et. al., Performance of concrete incoporating GGBS in aggressive waste waterenvironment. Construction and Building Materials, 2015. 27: p.368-374.

73. ASTM C151. Standard Test Method for Autoclave Expansion of Hydraulic Cement. ASTM: West Conshohocken, PA, USA, 2014.

74. ASTM C1202. Standard Test Method for Electrical Indication of Concrete's
Ability to Resist Chloride Ion Penetration ASTM: West Conshohocken, PA, USA, 2014.

75. ASTM C227. Standard Test Method for Potential Alkali Reactivity of
Cement-Aggregate Combinations (Mortar-Bar Method). ASTM: West
Conshohocken, PA, USA, 2014.

76. CNS 3763. Waterproof Agent of Cement for Concrete Construction

77. CNS 13297. Method of Test for Abrasion Resistance of Concrete by
Sandblasting

78. CNS 14603. Use of Apparatus for the Determination of Length Change of
Hardened Cement Paste, Mortar ,Concrete

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top