跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:萬德輝
研究生(外文):De-Hui Wan
論文名稱:利用奈米粒子開發新型化學感測器與光電元件
論文名稱(外文):Applying nanoparticles to develop specific chemical sensors and optoelectronic devices
指導教授:陳學禮陳學禮引用關係林金福林金福引用關係
指導教授(外文):Hsuen-Li ChenKing-Fu Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:200
中文關鍵詞:中空奈米粒子表面電漿共振感測器太陽能電池三維有限時域差分法光學資訊儲存系統
外文關鍵詞:hollow gold nanoparticlessurface plamon resonancesensorssolar cellsoptical data storage system3D finite-difference time domains
相關次數:
  • 被引用被引用:2
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究目的在於利用實心與中空的金屬奈米粒子開發新型的化學感測器及光電元件。本論文之第一部份簡述奈米粒子的製備、物理及化學性質與相關的應用。在第二部份的研究中,我利用表面電漿共振(SPR)效應及金奈米粒子對烷基硫醇分子(alkanethiol)的高反應性設計了兩種分別可應用在矽及塑膠基板上之化學感測器。首先,我合成了一系列具有不同形貌及不同SPR效應的中空金粒子(HGNs),並利用光譜橢圓儀(SE)來討論單層中空金粒子陣列之光學常數,如折射率(n)及消光係數(k)。此奈米粒子陣列的消光係數曲線具有一個SPR的特徵峰,其波段則與其在水溶液狀態下的SPR吸收波段相似。另一方面,此奈米粒子陣列的折射率則因為SPR效應出現了異常色散(abnormal dispersion)的特性。接著我比較了中空金粒子跟實心金粒子(SGNs)陣列其光學常數的差異,並利用光譜橢圓儀及中空金粒子所具有的較高靈敏性製備了一種可在不透明基板上偵測環境折射率變化之化學感測器。在本論文第二部分的後段,我利用奈米粒子的SPR散射(scattering)現象製備了一種可撓曲的波導式化學感測器。為此,我改良了傳統的奈米轉印技術來將單層金屬奈米粒子陣列製備在未經任何表面處理的塑膠基板上。透過控制轉印的製程條件及模版(mold)的表面結構,我呈現了一種在三個維度皆可定位奈米粒子的能力:包括微調金屬奈米粒子埋進基板表面的深度及金屬奈米粒子在基板表面排列成二維次微米尺寸圖形的能力,同時其SPR的光學性質亦會隨之改變。接著,我利用三維有限時域差分法(3D FDTD)的光學模擬來討論當奈米粒子埋進表面後,在波導與空氣介面的近場光學行為。與模擬結果相呼應的是,相較於傳統的波導式感測器,在實際的散射信號量測中可獲得將近十倍的提升。這個SPR散射信號的提升主要是來自於,當金屬奈米粒子埋進波導的表面時,這些粒子會同時與波導內所侷限的模態(guiding-mold waves)及穿出表面的消逝波(evanescent waves)發生作用,並將其散射出來。在本論文的第三部份,我則利用金奈米粒子分別設計了三種在光電元件上的應用。首先,我研究透過KrF準分子雷射誘發中空金粒子發生型態轉變的光熱效應,並設計了一種全新光資料儲存系統。中空金粒子通常具有兩個吸收區,包括典型的SPR吸收峰,與來自於金屬材料在深紫外光波段的本質吸收。因此,僅需要單一脈衝的雷射光就能被中空粒子吸收,並且使其溫度上升,導致中空結構的崩解而轉變成實心的粒子,而這個粒子結構的變化則導致其在光學性質上的明顯改變: SPR特徵峰會發生大幅的藍移。利用這個方法,我呈現了此光儲存系統可以具有次微米解析度的的記錄能力,並且利用藍光雷射顯微鏡來作為讀取工具。更進一步來說,若是將此光學儲存系統結合前述奈米金屬粒子轉印技術於可撓曲的基材上,將可開發出一種比傳統光碟高出將近千倍儲存密度的光儲存記錄帶。在本論文第三部分的後段,我利用了奈米金粒子來開發兩種矽太陽能電池表面上最佳化的抗反射層結構(antireflection structure)。首先,利用金奈米粒子在矽的酸蝕刻中所具有的獨特催化能力,透過控制金奈米粒子陣列的密度及蝕刻時間,可以在矽基板上製作具有柱狀、甜筒狀及碗狀的均勻多孔性絨化之形貌。其中由緊密甜筒狀孔洞所形成的類金字塔(pyramidal)結構,則在可見光及近紅外光的範圍內皆呈現了非常低的反射率(小於3%)。而此低反射率則是來自於此結構所具有的漸變折射率以及能將光侷限在孔洞中的表現。除此之外,我進一步討論直接利用奈米粒子陣列作為矽太陽能電池的抗反射層結構之可行性。根據三維 FDTD的模擬結果,我認為金屬奈米粒子在此扮演一種有缺陷的抗反射層結構:當SPR散射發生時,會使得原本應該反射的光線進而穿透到基板內部,但是當SPR的吸收發生時,則會使入射光被粒子本身吸收而無法穿透到基板內部。為了證明這個假設,我設計了數種低反射率的情況,並在模擬及實際的太陽能電池上都看到相似的現象:當反射光原本就極低或不存在的情況下,金屬奈米粒子陣列反而會使得穿透到矽內部的光線減少。而為了兼顧奈米粒子在製程上的優勢及克服粒子本身吸收的缺陷,我選用了介電質奈米粒子(dielectric NPs)來作為抗反射層結構。最後,在模擬及實際的元件中,利用緊密排列的二氧化鈦奈米粒子作為矽太陽能電池的抗反射層結構,將可以在光電流(photocurrents)上獲得超過30%的提昇。

In this thesis, we utilized unique physical (optical, photothermal) and chemical properties (chemical affinity, catalytic) of metal nanoparticles (NPs) to develop specific chemical sensors and optoelectronic devices. In chapters 1-3, we briefly introduce the research background, literature reviews and the experimental details. In chapter 4, we suggest two kinds of metal-NP based chemical sensors on Si or flexible substrates. (i) We describe the optical constants of self-assembled hollow gold nanoparticle (HGN) monolayers determined through spectroscopic ellipsometry (SE). The extinction coefficient (k) curves of the HGN monolayers exhibited strong surface plasmon resonance (SPR) peaks located at wavelengths that followed similar trends to those of the SPR positions of the HGNs in solution. The refractive index (n) curves exhibited an abnormal dispersion that was due to the strong SPR extinction. The values of Δn and kmax both correlated linearly with the particle number densities. From a comparison of the optical constant values of HGNs with those of solid Au nanoparticles (SGNs), we used SE measurements to demonstrate a highly sensitive Si-based chemical sensor. HGNs display a slightly lower value of k at the SPR peak but a much higher sensitivity to changes in the surrounding medium than do SGNs. (ii) We fabricated a flexible SPR-based scattering waveguide-sensor by directly imprinting HGNs and SGNs onto flexible polycarbonate (PC) plates—without any surface modification—using a modified reversal nanoimprint lithography (rNIL) technology. Controlling the imprinting conditions, including temperature and pressure, allowed us to finely adjust the depth of embedded metal NPs and their SPR properties. Consistent with the three dimensional FDTD simulations, experimentally We obtained an almost one order of magnitude enhancement in the scattering signal after transferring the metal NPs from a glass mold to a PC substrate. We attribute this enhanced signal to the particles strong scattering of the guiding-mode waves and the evanescent wave simultaneously. In chapter 5, we suggest three kinds of NPs enhanced optoelectronic devices. (i) We demonstrate a new optical data storage method: photomodification of HGN monolayers induced by one-shot of deep-ultraviolet (DUV) KrF laser recording. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue-shift of the SPR peak. If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs. (ii) We describe the preparation of optimal textured structures on Si surfaces through metal-assisted etching using SGNs as catalysts in HF/H2O2 solution. We obtained uniformly textured Si layers containing cylindrical, conical, and bowl-shaped features. A textured surface possessing close-packed pyramidal features with dimensions on the subwavelength scale exhibited the lowest reflectance (< 3%) over the entire visible and NIR spectrum. This low reflectance arose from the refractive index gradient of the Si surface and light trapping phenomena. (iii) We systematically investigated the phenomenon of light trapping in Si solar cells coated with metal and dielectric nanoparticles. Based on the FDTD simulations, we suspected that SGN arrays could be considered as deficient single-layer antireflection coatings: they could reduce the amount of reflected light, scattering it into the Si substrates, while strongly absorbing incident light in the plasmonic resonance wavelength regime. We obtained strong evidence supporting this hypothesis from our observation that the degree of light trapping in Si solar cells was dramatically suppressed when using the SGN arrays under a variety of low reflection conditions. Therefore, we replaced the SGNs with dielectric NPs, which possess lower extinction coefficients and better antireflection ability. Finally, we used a simple, rapid, and cheap solution-based method to prepare close-packed TiO2 NP films on Si solar cells; these devices exhibited a uniform and remarkable increase (ca. 30%) in their photocurrents.

誌謝 I
摘要 IV
ABSTRACT VII
TABLE OF CONTENTS IX
LIST OF FIGURES XII
LIST OF TABLES XVIII
LIST OF TABLES XVIII
LIST OF ABBREVIATIONS XIX

CHAPTER 1 INTRODUCTION 1
1.1 RESEARCH BACKGROUND 1
1.2 MOTIVATION 2
1.3 DISSERTATION ORGANIZATION 3
CHAPTER 2 LITERATURE REVIEW 7
2.1 SYNTHESIS OF METAL NANOPARTICLES (NPS) 7
2.1.1 Synthesis of solid gold nanoparticles (SGNs) 7
2.1.2 Synthesis of hollow gold nanoparticles (HGNs) 7
2.2 PHYSICAL AND CHEMICAL PROPERTIES OF METAL NPS 9
2.2.1 Optical properties 9
2.2.2 Photothermal properties 14
2.2.3 Chemical affinity 15
2.2.4 Catalytic properties 18
2.3 CURRENT DEVELOPMENTS OF METAL NPS ENHANCED DEVICES 20
2.3.1 Bio/chemical sensors 20
2.3.2 Optical data storage systems 25
2.3.3 Silicon solar cells 28
CHAPTER 3 EXPERIMENTS 51
3.1 MATERIALS 51
3.1.1 Chemicals 51
3.1.2 Substrates and Si solar cells 51
3.2 METAL NPS PREPARATIONS 52
3.2.1 SGNs 52
3.2.2 HGNs 53
3.3 METAL NP MONOLAYER PREPARATIONS 54
3.3.1 Self-assembly 54
3.3.2 Reversal nanoimprint lithography (rNIL) 55
3.4 FUNCTIONAL MODIFICATIONS 55
3.4.1 Alkanethiol adsorption 55
3.4.2 Cysteine adsorption 56
3.4.3 Laser illumination and heat treatment 56
3.4.4 HF/H2O2 wet etching 57
3.5 CHARACTERIZATIONS 57
3.5.1 Ellipsometry 57
3.5.2 Scattering measurement 59
3.5.3 Microscopy 59
3.5.4 Efficiency measurement 60
CHAPTER 4 METAL NP BASED CHEMICAL SENSORS 63
4.1 SPR CHEMICAL SENSORS BY ELLIPSOMETERY 63
4.1.1 Introduction 63
4.1.2 Characterization of monolayer HGNs 63
4.1.3 Highly sensitive HGNs-based Si sensors 75
4.1.4 Summary 77
4.2 FLEXIBLE SPR SCATTERING WAVEGUIDE SENSOR 79
4.2.1 Introduction 79
4.2.2 RNIL processing 80
4.2.3 Strongly enhanced scattering waveguide sensors 87
4.2.4 Summary 94
CHAPTER 5 METAL NP ENHANCED OPTOELECTRONIC DEVICES 114
5.1 FLEXIBLE SPR OPTICAL STORAGE SYSTEM BY KRF LASER 114
5.1.1 Introduction 114
5.1.2 Photomodification of monolayer HGNs 114
5.1.3 Large area and high density data storage system 123
5.1.4 Summary 128
5.2 FABRICATION OF POROUS ANTIREFLECTIVE LAYER FOR SI SOLAR CELLS 129
5.2.1 Introduction 129
5.2.2 Fabrication of antireflective layer through SGNs as catalysts 129
5.2.3 Near-field optical simulation 135
5.2.4 Summary 138
5.3 ANTIREFLECTIVE NP ARRAYS FOR THE EFFICIENCY ENHANCEMENT IN SI SOLAR CELLS 139
5.3.1 Introduction 139
5.3.2 SGNs arrays based efficiency enhancement 140
5.3.3 Dielectric NPs arrays based efficiency enhancement 150
5.3.4 Summary 159
CHAPTER 6 CONCLUSIONS AND FUTURE WORK 186
6.1 CONCLUSIONS 186
6.2 FUTURE WORK 189
6.2.1 Metal NP based medical applications 189
6.2.2 Metal NP enhanced optoelectronic devices 189
REFERENCES 191
PUBLICATION LIST 199



1.Turkevich, J.; Stevenson, P. C.; Hillier, J., Discussions of the Faraday Society 1951, 11, 55.
2.Green, M.; O''Brien, P., Chemical Communications 2000, 3, 183.
3.Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Journal of the Chemical Society-Chemical Communications 1994, 7, 801.
4.Oldenburg, S. J.; Jackson, J. B.; Westcott, S. L.; Halas, N. J., Applied Physics Letters 1999, 75, 2897.
5.Shi, W. L.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N., Langmuir 2005, 21, 1610.
6.Sun, Y. G.; Xia, Y. N., Analytical Chemistry 2002, 74, 5297.
7.Sun, Y. G.; Mayers, B. T.; Xia, Y. N., Nano Letters 2002, 2, 481.
8.Ng, J. D.; Lorber, B.; Witz, J.; TheobaldDietrich, A.; Kern, D.; Giege, R., Journal of Crystal Growth 1996, 168, 50.
9.Boistelle, R.; Astier, J. P., Journal of Crystal Growth 1988, 90, 14.
10.Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., Journal of Physical Chemistry B 2003, 107, 668.
11.Yguerabide, J.; Yguerabide, E. E., Analytical Biochemistry 1998, 262, 137.
12.Orendorff, C. J.; Sau, T. K.; Murphy, C. J., Small 2006, 2, 636.
13.Jackson, J. B.; Halas, N. J., Journal of Physical Chemistry B 2001, 105, 2743.
14.Selvakannan, P. R.; Sastry, M., Chemical Communications 2005, 13, 1684.
15.Novak, J. P.; Nickerson, C.; Franzen, S.; Feldheim, D. L., Analytical Chemistry 2001, 73, 5758.
16.Caruso, R. A.; Antonietti, M., Chemistry of Materials 2001, 13, 3272.
17.Kubo, S.; Diaz, A.; Tang, Y.; Mayer, T. S.; Khoo, I. C.; Mallouk, T. E., Nano Letters 2007, 7, 3418.
18.Hao, E.; Li, S. Y.; Bailey, R. C.; Zou, S. L.; Schatz, G. C.; Hupp, J. T., Journal of Physical Chemistry B 2004, 108, 1224.
19.Prevo, B. G.; Esakoff, S. A.; Mikhailovsky, A.; Zasadzinski, J. A., Small 2008, 4, 1183.
20.Schwartzberg, A. M.; Oshiro, T. Y.; Zhang, J. Z.; Huser, T.; Talley, C. E., Analytical Chemistry 2006, 78, 4732.
21.Shukla, S.; Priscilla, A.; Banerjee, M.; Bhonde, R. R.; Ghatak, J.; Satyam, P. V.; Sastry, M., Chemistry of Materials 2005, 17, 5000.
22.Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D.; Xia, Y., Nano Letters 2005, 5, 473.
23.Moores, A.; Goettmann, F., New Journal of Chemistry 2006, 30, 1121.
24.Doremus, R. H., Langmuir 2002, 18, 2436.
25.Zhong, Z. Y.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A., Journal of Physical Chemistry B 2004, 108, 4046.
26.Aslan, K.; Holley, P.; Davies, L.; Lakowicz, J. R.; Geddes, C. D., Journal of the American Chemical Society 2005, 127, 12115.
27.Bohren, C. F.; Huffman, D. R., Absorption and scattering of light by small particles. Wiley Professional Paperback ed.; Wiley: New York, 1998.
28.Weissleder, R., Nature Biotechnology 2001, 19, 316.
29.Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X. D.; Xia, Y. N., Advanced Materials 2005, 17, 2255.
30.Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 13549.
31.Akchurin, G.; Khlebtsov, B.; Akchurin, G.; Tuchin, V.; Zharov, V.; Khlebtsov, N., Nanotechnology 2008, 19, 015701.
32.Hu, M.; Petrova, H.; Chen, J. Y.; McLellan, J. M.; Siekkinen, A. R.; Marquez, M.; Li, X. D.; Xia, Y. N.; Hartland, G. V., Journal of Physical Chemistry B 2006, 110, 1520.
33.Aguirre, C. M.; Moran, C. E.; Young, J. F.; Halas, N. J., Journal of Physical Chemistry B 2004, 108, 7040.
34.Prasad, V.; Mikhailovsky, A.; Zasadzinski, J. A., Langmuir 2005, 21, 75282.
35.Harris, N.; Ford, M. J.; Cortie, M. B., Journal of Physical Chemistry B 2006, 110, 10701.
36.Link, S.; Hathcock, D. J.; Nikoobakht, B.; El-Sayed, M. A., Advanced Materials 2003, 15, 393.
37.Roper, D. K.; Ahn, W.; Hoepfner, M., Journal of Physical Chemistry C 2007, 111, 3636.
38.Richardson, H. H.; Hickman, Z. N.; Govorov, A. O.; Thomas, A. C.; Zhang, W.; Kordesch, M. E., Nano Letters 2006, 6, 783.
39.Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Analytical Chemistry 1995, 67, 735.
40.Keating, C. D.; Musick, M. D.; Keefe, M. H.; Natan, M. J., Journal of Chemical Education 1999, 76, 949.
41.Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Science 1995, 267, 1629.
42.Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter, D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J., Journal of the American Chemical Society 1996, 118, 1148.
43.Weisbecker, C. S.; Merritt, M. V.; Whitesides, G. M., Langmuir 1996, 12, 3763.
44.Giersig, M.; Mulvaney, P., Langmuir 1993, 9, 3408.
45.Zhang, F. X.; Han, L.; Israel, L. B.; Daras, J. G.; Maye, M. M.; Ly, N. K.; Zhong, C. J., Analyst 2002, 127, 462.
46.Aslan, K.; Perez-Luna, V. H., Langmuir 2002, 18, 6059.
47.Zhu, T.; Vasilev, K.; Kreiter, M.; Mittler, S.; Knoll, W., Langmuir 2003, 19, 9518.
48.Mayya, K. S.; Patil, V.; Sastry, M., Langmuir 1997, 13, 3944.
49.Daniel, M. C.; Astruc, D., Chemical Reviews 2004, 104, 293.
50.Cha, D. Y.; Parravan.G, Journal of Catalysis 1970, 18, 200.
51.Parravan.G, Journal of Catalysis 1970, 18, 320.
52.Schwank, J.; Galvagno, S.; Parravano, G., Journal of Catalysis 1980, 63, 415.
53.Galvagno, S.; Parravano, G., Journal of Catalysis 1978, 55, 178.
54.Haruta, M., Catalysis Today 1997, 36, 153.
55.Ueda, A.; Oshima, T.; Haruta, M., Applied Catalysis B-Environmental 1997, 12, 81.
56.Andreeva, D.; Tabakova, T.; Idakiev, V.; Christov, P.; Giovanoli, R., Applied Catalysis a-General 1998, 169, 9.
57.Sakurai, H.; Haruta, M., Catalysis Today 1996, 29, 361.
58.Tsujino, K.; Matsumura, M., Advanced Materials 2005, 17, 1045.
59.Tsujino, K.; Matsumura, M., Electrochimica Acta 2007, 53, 28.
60.Tsujino, K.; Matsumura, M., Electrochemical and Solid State Letters 2005, 8, C193.
61.Matsumura, M.; Morrison, S. R., Journal of Electroanalytical Chemistry 1983, 147, 157.
62.Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Chemical Reviews 2008, 108, 494.
63.De, M.; Ghosh, P. S.; Rotello, V. M., Advanced Materials 2008, 20, 4225.
64.Fritzsche, W.; Taton, T. A., Nanotechnology 2003, 14, R63.
65.Liu, J. W.; Lu, Y., Angewandte Chemie-International Edition 2006, 45, 90.
66.Rosi, N. L.; Mirkin, C. A., Chemical Reviews 2005, 105, 1547.
67.Hutter, E.; Fendler, J. H.; Roy, D., Journal of Physical Chemistry B 2001, 105, 11159.
68.Fu, E.; Ramsey, S. A.; Yager, P., Analytica Chimica Acta 2007, 599, 118.
69.Li, X. H.; Tamada, K.; Baba, A.; Knoll, W.; Hara, M., Journal of Physical Chemistry B 2006, 110, 15755.
70.Stimpson, D. I.; Hoijer, J. V.; Hsieh, W. T.; Jou, C.; Gordon, J.; Theriault, T.; Gamble, R.; Baldeschwieler, J. D., Proceedings of the National Academy of Sciences of the United States of America 1995, 92, 6379.
71.Taton, T. A.; Lu, G.; Mirkin, C. A., Journal of the American Chemical Society 2001, 123, 5164.
72.Storhoff, J. J.; Lucas, A. D.; Garimella, V.; Bao, Y. P.; Muller, U. R., Nature Biotechnology 2004, 22, 883.
73.Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Science 2000, 289, 1757.
74.Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A., Science 2002, 297, 1536.
75.Mulvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J., Langmuir 2003, 19, 4784.
76.Sharma, A. K.; Jha, R.; Gupta, B. D., IEEE Sensors Journal 2007, 7, 1118.
77.Cheng, S. F.; Chau, L. K., Analytical Chemistry 2003, 75, 16.
78.Graham-Smith, F.; King, T. A.; Wilkins, D., Optics and photonics : an introduction. 2nd ed.; J. Wiley: Chichester, England ; Hoboken, NJ, 2007.
79.Ling, J.; Li, Y. F.; Huang, C. Z., Analytical Chemistry 2009, 81, 1707.
80.Lee, C. W.; Chen, M. J.; Cheng, J. Y.; Wei, P. K., Journal of Biomedical Optics 2009, 14, 034016.
81.Puvanakrishnan, P.; Park, J.; Diagaradjane, P.; Schwartz, J. A.; Coleman, C. L.; Gill-Sharp, K. L.; Sang, K. L.; Payne, J. D.; Krishnan, S.; Tunnell, J. W., Journal of Biomedical Optics 2009, 14, 024044.
82.Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B. M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S. R., Nanotechnology 2009, 20, 395102.
83.Mallidi, S.; Larson, T.; Tam, J.; Joshi, P. P.; Karpiouk, A.; Sokolov, K.; Emelianov, S., Nano Letters 2009, 9, 2825.
84.Kirillin, M.; Shirmanova, M.; Sirotkina, M.; Bugrova, M.; Khlebtsov, B.; Zagaynova, E., Journal of Biomedical Optics 2009, 14, 021017.
85.Kim, C. S.; Wilder-Smith, P.; Ahn, Y. C.; Liaw, L. H. L.; Chen, Z. P.; Kwon, Y. J., Journal of Biomedical Optics 2009, 14, 034008.
86.Kooij, E. S.; Wormeester, H.; Brouwer, E. A. M.; van Vroonhoven, E.; van Silfhout, A.; Poelsema, B., Langmuir 2002, 18, 4401.
87.Zhang, H. L.; Evans, S. D.; Henderson, J. R., Advanced Materials 2003, 15, 531.
88.Chen, H. L.; Cheng, H. C.; Ko, T. S.; Chuang, S. Y.; Chu, T. C., Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2006, 45, 6984.
89.Bhat, R. R.; Genzer, J., Surface Science 2005, 596, 187.
90.Chen, M.; Horn, R. G., Journal of Colloid and Interface Science 2007, 315, 814.
91.Wang, D. S.; Lin, C. W., Optics Letters 2007, 32, 2128.
92.Wu, P. C.; Kim, T. H.; Brown, A. S.; Losurdo, M.; Bruno, G.; Everitt, H. O., Applied Physics Letters 2007, 90, 103119.
93.Lee, S. J.; Yu, A. C. C.; Lo, C. C. H.; Fan, M., Physica Status Solidi a-Applied Research 2004, 201, 3031.
94.Hecht, E., Optics. 4th ed.; Addison-Wesley: Reading, Mass., 2002.
95.Ditlbacher, H.; Krenn, J. R.; Lamprecht, B.; Leitner, A.; Aussenegg, F. R., Optics Letters 2000, 25, 563.
96.Shi, L. P.; Chong, T. C.; Yao, H. B.; Tan, P. K.; Miao, X. S., Journal of Applied Physics 2002, 91, 10209.
97.Ng, M. Y.; Liu, W. C., Optics Express 2005, 13, 9422.
98.Tanaka, T.; Kawata, S., IEEE Transactions on Magnetics 2007, 43, 828.
99.Zijlstra, P.; Chon, J. W. M.; Gu, M., Optics Express 2007, 15, 12151.
100.Chon, J. W. M.; Bullen, C.; Zijlstra, P.; Gu, M., Advanced Functional Materials 2007, 17, 875.
101.Zijlstra, P.; Chon, J. W. M.; Gu, M., Nature 2009, 459, 410.
102.Kuznetsova, Y.; Neumann, A.; Brueck, S. R. J., Optics Express 2007, 15, 6651.
103.Mohlmann, G. R., Synthetic Metals 1990, 37, 207.
104.Bäumer, S., Handbook of plastic optics. Wiley-VCH: Weinheim, 2005.
105.Ghawana, K.; Singh, S.; Sharma, V. K.; Kapoor, A.; Tripathi, K. N., Applied Optics 1998, 37, 4051.
106.Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S. N.; Glatthaar, M.; Meyer, T.; Meyer, A., Solar Energy Materials and Solar Cells 2007, 91, 379.
107.Zhou, L. S.; Wanga, A.; Wu, S. C.; Sun, J.; Park, S.; Jackson, T. N., Applied Physics Letters 2006, 88, 083502.
108.Li, C. Y.; Han, J. Y.; Ahn, C. H., Biosensors & Bioelectronics 2007, 22, 1988.
109.Latessa, G.; Brunetti, F.; Reale, A.; Saggio, G.; Di Carlo, A., Sensors and Actuators B-Chemical 2009, 139, 304.
110.Roberts, M. E.; Mannsfeld, S. C. B.; Stoltenberg, R. M.; Bao, Z. N., Organic Electronics 2009, 10, 377.
111.Tan, H.; Gilbertson, A.; Chou, S. Y., Journal of Vacuum Science & Technology B 1998, 16, 3926.
112.Lee, S. H.; Lee, I.; Yi, J., Surface & Coatings Technology 2002, 153, 67.
113.Winderbaum, S.; Reinhold, O.; Yun, F., Solar Energy Materials and Solar Cells 1997, 46, 239.
114.Macdonald, D. H.; Cuevas, A.; Kerr, M. J.; Samundsett, C.; Ruby, D.; Winderbaum, S.; Leo, A., Solar Energy 2004, 76, 277.
115.Sun, C. H.; Min, W. L.; Linn, N. C.; Jiang, P.; Jiang, B., Applied Physics Letters 2007, 91, 231105.
116.Chen, H. L.; Chuang, S. Y.; Lin, C. H.; Lin, Y. H., Optics Express 2007, 15, 14793.
117.Hylton, J. D.; Burgers, A. R.; Sinke, W. C., Journal of the Electrochemical Society 2004, 151, G408.
118.Campbell, P.; Green, M. A., Journal of Applied Physics 1987, 62, 243.
119.Kwon, J. H.; Lee, S. H.; Ju, B. K., Journal of Applied Physics 2007, 101, 104515.
120.Strehlke, S.; Bastide, S.; Guillet, J.; Levy-Clement, C., Materials Science and Engineering B-Solid State Materials for Advanced Technology 2000, 69, 81.
121.Kwon, J. H.; Lee, S. H.; Ju, B. K., Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2006, 45, 2875.
122.Yae, S.; Kawamoto, Y.; Tanaka, H.; Fukumuro, N.; Matsuda, H., Electrochemistry Communications 2003, 5, 632.
123.Yae, S.; Kobayashi, T.; Kawagishi, T.; Fukumuro, N.; Matsuda, H., Solar Energy 2006, 80, 701.
124.Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J. J.; Flory, F.; Mathian, G., Solar Energy Materials and Solar Cells 2009, 93, 1377.
125.Kim, S. S.; Na, S. I.; Jo, J.; Kim, D. Y.; Nah, Y. C., Applied Physics Letters 2008, 93, 073307.
126.Khurgin, J. B.; Sun, G.; Soref, R. A., Applied Physics Letters 2009, 94, 071103.
127.Hallermann, F.; Rockstuhl, C.; Fahr, S.; Seifert, G.; Wackerow, S.; Graener, H.; von Plessen, G.; Lederer, F., Physica Status Solidi a-Applications and Materials Science 2008, 205, 2844.
128.Schaadt, D. M.; Feng, B.; Yu, E. T., Applied Physics Letters 2005, 86, 063106.
129.Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A., Journal of Applied Physics 2007, 101, 093105.
130.Sundararaian, S. P.; Grady, N. K.; Mirin, N.; Halas, N. J., Nano Letters 2008, 8, 624.
131.Cole, J. R.; Halas, N. J., Applied Physics Letters 2006, 89, 153120.
132.Lim, S. H.; Mar, W.; Matheu, P.; Derkacs, D.; Yu, E. T., Journal of Applied Physics 2007, 101, 104309.
133.Matheu, P.; Lim, S. H.; Derkacs, D.; McPheeters, C.; Yu, E. T., Applied Physics Letters 2008, 93, 113108.
134.Nakayama, K.; Tanabe, K.; Atwater, H. A., Applied Physics Letters 2008, 93, 121904.
135.Catchpole, K. R.; Polman, A., Applied Physics Letters 2008, 93, 191113.
136.Catchpole, K. R.; Polman, A., Optics Express 2008, 16, 21793.
137.Labhasetwar, V.; Leslie-Pelecky, D. L., Biomedical applications of nanotechnology. Wiley-Interscience: Hoboken, N.J., 2007.
138.Walters, G.; Parkin, I. P., Journal of Materials Chemistry 2009, 19, 574.
139.Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Journal of Vacuum Science & Technology B 1996, 14, 4129.
140.Ko, S. H.; Park, I.; Pan, H.; Grigoropoulos, C. P.; Pisano, A. P.; Luscombe, C. K.; Frechet, J. M. J., Nano Letters 2007, 7, 1869.
141.Chen, H. L.; Chuang, S. Y.; Lee, W. H.; Kuo, S. S.; Su, W. F.; Ku, S. L.; Chou, Y. F., Optics Express 2009, 17, 1636.
142.Yang, W. R.; Gooding, J. J.; He, Z. C.; Li, Q.; Chen, G. N., Journal of Nanoscience and Nanotechnology 2007, 7, 712.
143.Tompkins, H. G.; McGahan, W. A., Spectroscopic ellipsometry and reflectometry : a user''s guide. Wiley: New York, 1999.
144.Wan, D. H.; Chen, H. L.; Lin, Y. S.; Chuang, S. Y.; Shieh, J.; Chen, S. H., Acs Nano 2009, 3, 960.
145.Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K., Nature 2001, 410, 450.
146.Sun, Y. G.; Xia, Y. N., Journal of the American Chemical Society 2004, 126, 3892.
147.Novo, C.; Funston, A. M.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P., Journal of Physical Chemistry C 2008, 112, 3.
148.Fox, M., Optical properties of solids. Oxford University Press: Oxford ; New York, 2001.
149.Palik, E. D., Handbook of optical constants of solids. Academic Press: Orlando, 1985.
150.Khlebtsov, B. N.; Khanadeyev, V. A.; Ye, J.; Mackowski, D. W.; Borghs, G.; Khlebtsov, N. G., Physical Review B 2008, 77, 035440.
151.Schelm, S.; Smith, G. B., Journal of Physical Chemistry B 2005, 109, 1689.
152.Pena, O.; Pal, U.; Rodriguez-Fernandez, L.; Crespo-Sosa, A., Journal of the Optical Society of America B-Optical Physics 2008, 25, 1371.
153.Tam, F.; Moran, C.; Halas, N., Journal of Physical Chemistry B 2004, 108, 17290.
154.Kircher, K.; Kranz, R., Kunststoffe-German Plastics 1991, 81, 51.
155.Takemori, M. T., Polymer Engineering and Science 1979, 19, 1104.
156.Shin, H.; Kim, H.; Lee, H.; Yoo, H.; Kim, J.; Kim, H.; Lee, M., Advanced Materials 2008, 20, 3457.
157.Li, X. Y.; Mason, J., Macromolecular Materials and Engineering 2009, 294, 306.
158.Chen, H. L.; Hsieh, K. C.; Lin, C. H.; Chen, S. H., Nanotechnology 2008, 19, 435304.
159.Reichert, J.; Csaki, A.; Kohler, J. M.; Fritzsche, W., Analytical Chemistry 2000, 72, 6025.
160.Jacobsen, D. W., Clinical Chemistry 1998, 44, 1833.
161.Okubo, K.; Shimada, T.; Shimizu, T.; Uehara, N., Analytical Sciences 2007, 23, 85.
162.Shao, N.; Jin, J. Y.; Cheung, S. M.; Yang, R. H.; Chan, W. H.; Mo, T., Angewandte Chemie-International Edition 2006, 45, 4944.
163.Henley, S. J.; Carey, J. D.; Silva, S. R. P., Applied Surface Science 2007, 253, 8080.
164.Link, S.; Wang, Z. L.; El-Sayed, M. A., Journal of Physical Chemistry B 1999, 103, 3529.
165.Radloff, C.; Halas, N. J., Applied Physics Letters 2001, 79, 674.
166.Buffat, P.; Borel, J. P., Physical Review A 1976, 13, 2287.
167.Castro, T.; Reifenberger, R.; Choi, E.; Andres, R. P., Physical Review B 1990, 42, 8548.
168.Archambault, J. L.; Reekie, L.; Russell, P. S. J., Electronics Letters 1993, 29, 453.
169.Dyer, P. E.; Farley, R. J.; Giedl, R., Optics Communications 1995, 115, 327.
170.Hosono, H.; Kurita, M.; Kawazoe, H., Thin Solid Films 1999, 351, 137.
171.Malo, B.; Johnson, D. C.; Bilodeau, F.; Albert, J.; Hill, K. O., Optics Letters 1993, 18, 1277.
172.Smelser, C. W.; Mihailov, S. J.; Grobnic, D., Optics Express 2005, 13, 5377.
173.Tahir, B. A.; Ali, J.; Rahman, R. A., Journal of Optoelectronics and Advanced Materials 2006, 8, 1604.
174.Chau, L. K.; Lin, Y. F.; Cheng, S. F.; Lin, T. J., Sensors and Actuators B-Chemical 2006, 113, 100.
175.Ko, H.; Singamaneni, S.; Tsukruk, V. V., Small 2008, 4, 1576.
176.Shankar, S. S.; Rizzello, L.; Cingolani, R.; Rinaldi, R.; Pompa, P. P., Acs Nano 2009, 3, 893.
177.Slattery, O.; Lu, R. C.; Zheng, J.; Byers, F.; Tang, X., Journal of Research of the National Institute of Standards and Technology 2004, 109, 517.
178.Lai, F. D., Microelectronic Engineering 2004, 73-74, 63.
179.Lin, C. M.; Loong, W. A., Microelectronic Engineering 2001, 57-8, 41.
180.Bigall, N. C.; Hartling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmuller, A., Nano Letters 2008, 8, 4588.
181.Wan, D. H.; Chen, H. L.; Chuang, S. Y.; Yu, C. C.; Lee, Y. C., Journal of Physical Chemistry C 2008, 112, 20567.
182.Hagglund, C.; Zach, M.; Petersson, G.; Kasemo, B., Applied Physics Letters 2008, 92, 053110.
183.Akimov, Y. A.; Koh, W. S.; Ostrikov, K., Optics Express 2009, 17, 10195.
184.Nagel, H.; Aberle, A. G.; Hezel, R., Progress in Photovoltaics 1999, 7, 245.
185.Knittl, Z., Optics of thin films; an optical multilayer theory. Wiley: London, New York,, 1976.
186.Dholam, R.; Patel, N.; Adami, M.; Miotello, A., International Journal of Hydrogen Energy 2008, 33, 6896.
187.Borras, A.; Sanchez-Valencia, J. R.; Widmer, R.; Rico, V. J.; Justo, A.; Gonzalez-Elipe, A. R., Crystal Growth & Design 2009, 9, 2868.
188.Harizanov, O.; Harizanova, A., Sol. Energy Mater. Sol. Cells 2000, 63, 185.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張金鶚、賴碧瑩 1990〈房地產景氣指標建立與分析〉《國立政治大學學報》,61,333-411。
2. 彭建文、張金鶚 2000〈預期景氣與宣告效果對房地產景氣影響之研究《管理學報》,17(3),343-368。
3. 吳森田(1994),所得、貨幣與房價-近二十年台北地區的觀察,住宅學報,第二期,pp49-65。
4. 彭建文、張金鶚、林恩從(1998),房地產景氣對生產時間落差之影響,經濟論文叢刊,26,4,pp409-429。
5. 王卓聖(2001)。家庭結構變遷與兒童福利,兒童福利期刊,1,187-194。
6. 吳清山(2006)。創意學校總體營造的理念與實踐。教師天地,142,9-15
7. 林松柏、吳柏林(2006)。由學生人數下降趨勢探討幼兒教育政策之發展。教育研究月刊,151,5-14。
8. 林海清(2007)。少子化效應對技職教育發展之衝擊與因應策略。教育研究
9. 陳寬政(1995),台灣地區人口變遷與社會安全,社區發展季刊,70,98-115。
10. 黃哲彬(2006)。從少子化浪潮談對我國教育的衝擊與因應策略。教育趨勢導報,23,104-111。
11. 李玉瑛(1999)。實現你的明星夢─台灣婚紗照的消費文化分析。臺灣社會研究季刊,36,147-186。
12. 吳政達(1997)。教師在職進修需求評估與績效評鑑。研習資訊,143,64-71。
13. 吳密察(2003)。文化創意產業之規劃與推動。研考雙月刊,27(4),59-65。
14. 高以璇(2006)。從傳統婚禮儀式中的貺辭看臺灣社會的文化意涵。國立歷史博物館學報,33,55-105。
15. 黃志全(2003)。文化創意產業的政策目標。表演藝術,124, 5。