跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許賀然
研究生(外文):Ho-Jan Hsu
論文名稱:整合式多攝影機環境安全監控系統
論文名稱(外文):An Integrated Multi-Camera Surveillance System
指導教授:陳士農陳士農引用關係
指導教授(外文):Shyh-Nong Chen
學位類別:碩士
校院名稱:亞洲大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:52
中文關鍵詞:影像處理電腦視覺多攝影機監控系統即時偵測與追蹤
外文關鍵詞:image processingcomputer visionmulti camerasurveillance systemreal-time detection and tracking
相關次數:
  • 被引用被引用:4
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:3
近年來智慧型數位監控系統的快速發展,已不再侷限於一般傳統監控系統的功能,新式的多攝影機監控系統具備自動偵測、追蹤移動物件、辨識移動物件之身分與行為分析等功能,但功能主要著重在異常偵測與物件辨識,欠缺了攝影機彼此之間的關聯性,而且對於歷史監控畫面無法提供有效的查詢功能,因此本論文提出一套可將各個攝影機之間做關聯的環境安全監控系統,並且整合物件追蹤、辨識、物件特徵記錄與查詢功能,以滿足多攝影機監控系統的即時安全防範與危機處理需求。
本論文以電腦視覺為基礎,利用多個攝影機建置環境安全監控系統,攝影機可架設在各種場所,如針對容易發生治安死角的地點、居家與辦公大樓安全管理等。本論文以實際場景進行環境安全監控系統測試,經實驗證明,藉由本系統將各個攝影機進行關聯,可有效的記錄物件特徵、即時查閱物件行經路線,達到減少查閱歷史紀錄的時間與人力,更可提高危機處理能力。
In recent year the growth of smart digital surveillance system is boom. Except for traditional surveillance functions, a new multi-camera surveillance system has functions of automatic detection, tracing moving objects, identifying the moving object and behavior analysis. New functions focus on anomaly detection and object identification but are lack of the relations between each camera and the functions are also lack of the capability of querying about history surveillance pictures. Therefore the paper proposes an environmental surveillance system which can relate each camera and integrate functions of object tracing, object identifying, recording and querying object features. The proposed multi-camera surveillance system is able to execute real time security protection and emergency management.
The paper is based on computer vision to use several cameras to construct an environmental surveillance system. The cameras can be deployed in any kind of place, for example, to the security management of place with bad social order, to residence and to office buildings. The experiment has proved that through the connections between cameras build by the system in a real scene, the system is able to record object features sufficiently, to trace object in real time, to reduce the time for querying history records and to increase the capability of emergency management.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 xiv
表目錄 xv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究架構 3
第二章 相關研究 5
2.1 電腦視覺技術相關研究 5
2.2 環境安全監控系統相關研究 6
2.3 物件查尋與記錄技術相關研究 7
第三章 研究方法 9
3.1 系統架構 9
3.2 系統流程 10
3.3 背景建立與更新 10
3.4 物件偵測 12
3.4.1 前景影像偵測 13
3.4.2 灰階 14
3.4.3 二值化 15
3.4.4 侵蝕(Erosion)與擴張(Dilation) 15
3.4.5 相鄰元素編號演算法(Connected Component Labeling) 16
3.4.6 不感興趣物件濾除與物件記錄 17
3.5 陰影去除 19
3.6 物件辨識與追蹤 20
3.6.1 關聯性區塊比對法(Correlation Based Block Matching) 21
3.6.2 主要色彩描述演算法(Dominant Color Description) 22
3.7 多物件追蹤與辨識 24
3.8 物件特徵記錄與搜尋 27
第四章 實驗與結果 28
4.1 實驗環境 28
4.1.1 系統環境 28
4.1.2 設備規格 30
4.2 背景建立與更新 31
4.3 物件偵測 31
4.4 物件追蹤辨識 32
4.5 物件特徵記錄與搜尋 32
4.6 系統實驗成果 32
第五章 結論與未來研究方向 47
5.1 結論 47
5.2 未來研究方向 47
參考文獻 48
誌 謝 51
簡 歷 52
[1]A. A. Al-Janobi and G. Kranzler, “Machine vision inspection of date fruits,” ASAE Paper, NO. 94-3575, 1994.
[2]J. Marchant, C. Onyango and, M. Street, “Computer vision for potato inspection without singulation,” Computers and Electronics in Agriculture Vol. 4, NO. 3, pp. 235-244, 1990.
[3]V. C. Patel, R. W. McClendon and, J. W. Goodrum, “Detection of cracks in eggs using color computer vision and artificial neural networks,” AI Applications Vol. 10, NO. 3, pp. 19-28, 1996.
[4]M. A. Shahin, and S. J. Symons, “A machine vision system for color classification of lentils,” ASAE Paper NO. 99-3202, 1999.
[5]M. A. Shahin and E. W. Tollner, “A computer vision system for sorting apples,” ASAE Paper NO. 98-3025., 1998.
[6]N. Singh, M. J. Delwiche and, R. S. Johnson, “Machine vision algorithms for defect grading of stonefruit,” ASAE Paper NO. 93-3005, 1993.
[7]N. J. C. Strachan, “Length measurement of fish by computer Vision,” Computers and Electronics in Agriculture Vol. 8, NO. 2, pp. 93-104, 1993.
[8]R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin,D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, “A System for Video Surveillance and Monitoring,” Technical Report, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2000.
[9]L. Zhao, C. E. Thorpe, “Stereo and Neural Network-Based Pedestrian Detection,” IEEE Transactions ON Intelligent Transportation Systems, Vol. 1, NO. 3, Sep. 2000
[10]J. Black, T. Ellis, “Multi Camera Image Tracking,” Proceedings 2nd IEEE Int. Workshop on PETS, Kauai, Hawaii, USA, Dec. 2001.
[11]Q. Zhou, J. K. Aggarwal, “Tracking and Classifying Moving Objects from Video,” Proceedings 2nd IEEE Int. Workshop on PETS, Kauai, Hawaii, USA, Dec. 2001.
[12]I. Matthews, T. F. Cootes, J A. Bangham, S. Cox and R. Harvey, “Extraction of Visual Features for Lipreading,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, NO. 2, pp. 198-213, 2002.
[13]C. C. Han, H. Y. M. Liao, G. J. Yu, and L. H. Chen, “Fast face detection via morphology-based pre-processing,” Pattern Recognition, Vol. 33, pp. 1701- 1712, 2000.
[14]S. L. Wang, W. H. Lau, and S. H. Leung, “Automatic lip contour extraction from color images,” Pattern Recognition, Vol. 37, pp. 2375- 2387, 2004.
[15]M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, “Pedestrian Detection Using Wavelet Templates,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193-199, June 1997.
[16]Mohan, C. Papageorgiou, and T. Poggio, “Example-based Object Detection in Images by Components,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, NO. 4, pp. 349-361, Apr. 2001.
[17]R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-Time Tracking of the Human Body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, NO. 7, pp. 780-785, July 1997.
[18]Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time Surveillance of People and Their Activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, NO. 8, pp. 809-830, August 2000.
[19]M. H. Tsai and S. J. Wang, “A New Region Tracking Model for Visual Surveillance Systems,” IPPR Conference on Computer Vision, Graphics and Image Processing (CVGIP), July 2006.
[20]林文祥,「以DSP實現移動物體影像的即時偵測與追蹤系統」,國立台灣科技大學電機工程研究所碩士論文,台北,2006。
[21]L. M. Borja and O. Fuentes, “An Object Detection System Using Image Reconstruction with PCA,” Proceedings of the Second Canadian Conference on Computer and Robot Vision, pp. 2-8, May 2005.
[22]P. Remagnino, A. I. Shihab and G. A. Jones, “Distributed Intelligence for Multi-Camera Visual Surveillance,” Pattern Recognition, Vol. 37, pp.675-689, 2004.
[23]J. Black, D. Makris and T. Ellis, “Hierarchical Database for Multi-Camera Surveillance System,” Pattern Analysis Application, pp. 430-446, 2005.
[24]D. Comaniciu, V. Ramesh, and P. Meer, “Kernel Based Object Tracking,” IEEE Trans. Pattern Analy. Machine Intel., Vol. 25, NO.5, pp. 564-557, May 2003.
[25]S. Antani, R. Kasturi, and R. Jain, “A Survey on the Use of Pattern Recognition Methods for Abstraction, Indexing, and Retrieval of Images and Video,” Pattern Recognition, Vol. 35, NO. 4, pp. 945-965, 2002.
[26]H. S. Chang, S. Sull, S. U. Lee, “Efficient Video Indexing Scheme for Content-Based Retrieval,” IEEE Trans Circuits Sys. Video Techn., Vol. 9, NO. 8, pp. 1269-1279, 1999.
[27]張厥煒、曹佑羽、楊棣華,「使用內容查詢及空間關係之多攝影機視訊保全監控系統」2007年全國計算機會議論文集,台中,2007/12,頁296-308。
[28]蘇志文,「以視訊內容為基礎應用於MPEG影片之視訊檢索技術」博士論文,國立中央大學資訊工程研究所,桃園,2005。
[29]W. Long and Y. H. Yang, “Stationary background generation: an alternative to the difference of two images,” Pattern Recognition, Vol. 23, NO. 12, pp. 1351-1359. 1990
[30]J. M. Wang and S. W. Chen, “Progressive Background Image Generation,” Journal of National Taiwan Normal University, Mathematics, Science and Technology, Vol. 47, NO. 2, pp. 43-54, 2002
[31]L. D. Stefano and A. Bulgarelli, “A Simple and Efficient Connected Components Labeling Algorithm,” Proceedings of 10th International Conference on Image Analysis, pp. 322-327, 1999.
[32]A. Prati, I. Mikic, M. M. Trivedi and R. Cucchiara, “Detecting moving shadows: algorithms and evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, NO. 7, July 2003
[33]P. Kumar and al. “A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system,” Proc. of the IEEE 5th Inter. Conference on Intelligent Transportation Systems, 2002
[34]S. J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, “Tracking Groups of People,” Computer Vision and Image Understanding, Vol. 80, pp. 42-56, 2000.
[35]B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada, “Color and Texture Descriptors,” IEEE Transaction on Circuits and Systems for Video Technology, Vol. 11, NO. 6, June 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊