跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 02:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡瑞興
研究生(外文):Rei-Hsing Hu
論文名稱:竹嵌紋病毒戴帽酵素中保留性芳香族胺基酸殘基突變對於鳥苷三磷酸被甲基化的影響及在酵母菌中建立病毒複製系統
論文名稱(外文):Mutational effects of the consensus aromatic residues in the mRNA capping domain of Bamboo mosaic virus on GTP methylation and virus accumulation and the establishment of BaMV replication system in Saccharomyces cerevisiae
指導教授:孟孟孝
口試委員:林納生徐堯煇蔡慶修鄭綺萍
口試日期:2011-07-11
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:甲基轉移酶甲基轉移酶甲基轉移酶甲基轉移酶
外文關鍵詞:Bamboo mosaic viruscapping enzymemethyltransferasevirus replication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
竹嵌紋病毒為 alphavirus-like superfamily 中馬鈴薯 X 病毒屬之成員,為正意 RNA 病毒。其基因體含有五個主要的轉譯架構,轉譯架構 1 可轉譯出大小約 155 kDa 的複製酵素,由 N 端至 C 端可分為三個活性區域:戴帽酵素區、類解旋酵素區及 RNA 聚合酵素區。alphavirus-like superfamily 有著特異的戴帽流程,病毒的戴帽酵素功能會先產生 m7GTP (甲基轉移活性),之後再將其中的 m7GMP 轉移至 5 端雙磷酸 RNA 上 (鳥苷轉移活性)。所形成的戴帽結構稱為 type 0 戴帽結構。竹嵌紋病毒戴帽酵素的 H68A 突變株,有著優於野生型酵素的甲基轉移活性,但卻失去鳥苷轉移活性;如此的特性,有助於研究瞭解甲基轉移活性。為了探討具有保留性的芳香族胺基酸對於受質 (AdoMet 和 GTP) 的結合及甲基轉移活性的重要性,本實驗以 H68A 為基礎,將芳香族胺基酸進行胺基酸定點突變。發現 Y126、F144、F161、Y192、Y203、Y213 這些芳香族胺基酸突變對 GTP 被甲基化的活性的影響和結合 AdoMet 的影響是彼此相關的。一般來說,這些突變株降低了 GTP 甲基化的活性,也損害竹嵌紋病毒在植物細胞中的累積。
有鑒於酵母菌運用在尋找病毒的宿主因子之方便性,本實驗企圖建立一個在酵母菌中可讓病毒複製的系統來研究竹嵌紋病毒的複製。pHGB 質體含有竹嵌紋病毒 cDNA,並利用 GAP (Glyceraldehyde-3-phosphate dehydrogenase) 啓動子在酵母菌中轉錄完整的病毒 RNA。將此質體送入不同的酵母菌株中,發現由病毒 RNA 中轉譯架構 5 的外鞘蛋白質可於這些酵母菌中累積。此外,將此質體中對病毒 RNA 聚合酵素活性重要的 GDD motif 剔除後,外鞘蛋白質的累積量急遽減少。但是,在病毒類解旋酵素中的重要胺基酸 GKS 突變卻不影響外鞘蛋白質的累積。因此,推測病毒在酵母菌中的外鞘蛋白質累積與 RNA 聚合酵素的功能性有關。此外,同為馬鈴薯病毒 X 屬的 PVX (Potato virus X) 及 FoMV (Foxtail mosaic virus) 等病毒則無法在此系統中累積其外鞘蛋白質。


Bamboo mosaic virus (BaMV), a member of the Potexvirus of the alpaviurslike superfamily, is a positive-strand RNA virus. The genome of BaMV consists of five open reading frames (ORFs), and the ORF 1 encodes a 155-kDa replicase, which could be separated into a capping enzyme domain, a helicase-like domain (HLD), and an RNA-dependent RNA polymerase domain (RdRp) from N to C terminus. The alphavirus-like superfamily has a special pathway for cap formation, by which the capping enzyme will first methylate GTP to generate m7GTP (methyltransferase activity) and transfer the m7GMP moiety from m7GTP to the 5’-diphosphate end of RNA (guanylyltransferase activity). The H68A mutant of BaMV capping enzyme has an increased methyltransferase activity than wildtype, but lose the guanylyltransferase activity; therefore, it represents a better target for the study of methyltransferase. A number of aromatic residues are conserved among the capping enzyme of the alphavirus-like superfamily. In order to understand importance of the consensus residues in substrate affinity (AdoMet and GTP) and GTP methylation, each of the residues was mutated on the basis of H68A. The changes in GTP methylation are correlated with the changes in AdoMet affinity based on the mutation effects of Y126, F144, F161, Y192, Y203, and Y213. In general, most mutants decrease the activity of GTP methylation, and injure the viral accumulation in plant, too.
Studying viral replication by using yeast as a host is a convenient way to find out the host factors; therefore, the system was attempted to be set up for studying the replication of BaMV. Plasmid, pHGB, containing the BaMV cDNA downstream the GAP (Glyceraldehyde-3-phosphate dehydrogenase) promoter, was constructed to drive the transcription of the complete genome RNA of BaMV in yeast. Several different yeast strains were transformed with the plasmid, and the coat protein (CP), which is encoded by the ORF 5 of the viral RNA, could be accumulated in these yeasts. Furthermore, deletion of the GDD motif, which is important for RdRp activity dramatically decreased the amount of CP. But the mutation of GKS, which is important residues for HLD, did not affect the accumulation of CP. The results implied that the accumulation of CP was related to the function of RdRp. However, PVX (Potato virus X) and FoMV (Foxtail mosaic virus) which both belong to the Potexvirus genus could not accumulate their CP in this system.


第一章 序言
一、竹嵌紋病毒.............................................................................................1
二、病毒的戴帽途徑.....................................................................................1
三、關於竹嵌紋病毒戴帽酵素.....................................................................3
四、RNA 病毒在宿主細胞中的複製............................................................4
五、竹嵌紋病毒的宿主因子.........................................................................5
第二章 竹嵌紋病毒戴帽酵素中保留性芳香族胺基酸殘基突變對於鳥苷三
磷酸被甲基化的影響
第一節 前言..................................................................................................6
第二節 材料與方法
一、質體的構築...........................................................................................8
二、質體轉形...............................................................................................8
三、酵母菌表達戴帽酵素之培養及誘導..................................................9
四、戴帽酵素萃取及純化...........................................................................9
五、甲基轉移酶的活性分析.....................................................................10
六、鳥苷轉移酶活性分析.........................................................................11
七、偵測戴帽酵素對受質結合能力.........................................................11
八、菸草原生質體之轉染.........................................................................12
九、白蔾接種.............................................................................................14
十、蛋白質電泳分析.................................................................................15
十一、西方墨點法.....................................................................................15
十二、戴帽結構的確認.............................................................................15
第三節 實驗結果
一、甲基轉移酶活性對於甲基接受者的專一性.....................................17
二、對甲基轉移酶活性重要的芳香族胺基酸.........................................18
三、戴帽酵素突變株對受質的親和力.....................................................19
四、對於竹嵌紋病毒在植物細胞中累積的重要芳香族胺基酸.............20
五、確認 F384A 突變株酵素的鳥苷轉移酶活性....................................21
第四節 討論
一、GDP 甲基化的生理意義....................................................................22
二、芳香族胺基酸的重要性.....................................................................22
三、F384A 可能的角色.............................................................................23
第三章 在酵母菌中建立病毒複製系統
第一節 前言................................................................................................25
第二節 材料與方法
一、質體的構築.........................................................................................27
二、質體的轉形.........................................................................................27
三、酵母菌總蛋白質的萃取.....................................................................28
第三節 實驗結果
一、竹嵌紋病毒可在酵母菌中測得外鞘蛋白質.....................................29
二、pHGBG 及 pHGBGRz 在酵母菌中外鞘蛋白質累積量相同...........29
三、PVX 及 FoMV 無法在酵母菌中測得外鞘蛋白質............................29
四、竹嵌紋病毒重要胺基酸突變株.........................................................29
五、改造外鞘蛋白質的轉譯架構.............................................................30
第四節 討論
一、竹嵌紋病毒於酵母菌中的複製.........................................................31
二、外鞘蛋白質的改造 ............................................................................31
參考文獻...........................................................................................................57

一、中文文獻
林納生, 陳脈紀, 江濤, 林維治, 1979. 台灣竹類嵌紋病之初步研究, 台灣省林業試驗所試驗報告第317號.

林眉君, 2005. 竹嵌紋病毒 RNA 戴帽酵素上的芳香族胺基酸殘基對甲基轉移活性之影響, 生物科技學研究所. 國立中興大學.

張雅婷, 2003. 一、竹嵌紋病毒戴帽酵素中參與受質 SAM 結合與催化甲基轉移能力之氨基酸探討。二、建立竹嵌紋病毒於酵母菌中之完整複製系統, 生物科技學研究所. 國立中興大學.

黃亦樂, 2003. 竹嵌紋病毒複製酵素之 RNA 戴帽酵素區之純化及催化反應步驟之研究, 生物科技學研究所. 國立中興大學.

蔡佳昇, 2004. 竹嵌紋病毒類解旋酵素之特定胺基酸對酵素活性及病毒於白蔾內存活的影響, 生物科技學研究所. 國立中興大學.

韓宇聰, 2002. 竹嵌紋病毒 RNA Capping Enzyme 上之特定胺基酸對其 Guanylyltransferase 活性的影響, 農業生物科技學研究所. 國立中興大學.

二、英文文獻
Ahola, T., Ahlquist, P., 1999. Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a. J Virol 73, 10061-10069.

Ahola, T., Kaariainen, L., 1995. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci USA 92, 507-511.

Angeletti, P.C., Kim, K., Fernandes, F.J., Lambert, P.F., 2002. Stable replication of papillomavirus genomes in Saccharomyces cerevisiae. J Virol 76, 3350-3358.

Bisaillon, M., Lemay, G., 1997. Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology 236, 1-7.

Chang, B.Y., Lin, N.S., Liou, D.Y., Chen, J.P., Liou, G.G., Hsu, Y.H., 1997. Subcellular localization of the 28 kDa protein of the triple-gene-block of bamboo mosaic potexvirus. J Gen Virol 78 ( Pt 5), 1175-1179.

Cheng, C.W., Hsiao, Y.Y., Wu, H.C., Chuang, C.M., Chen, J.S., Tsai, C.H., Hsu, Y.H., Wu, Y.C., Lee, C.C., Meng, M., 2009. Suppression of bamboo mosaic virus accumulation by a putative methyltransferase in Nicotiana benthamiana. J Virol 83, 5796-5805.

Cheng, J.H., Ding, M.P., Hsu, Y.H., Tsai, C.H., 2001. The partial purified RNA-dependent RNA polymerases from bamboo mosaic potexvirus and potato virus X infected plants containing the template-dependent activities. Virus Res 80, 41-52.

Cheng, S.F., Huang, Y.P., Wu, Z.R., Hu, C.C., Hsu, Y.H., Tsai, C.H., 2010. Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism. BMC Plant Biol 10, 286.

den Boon, J.A., Chen, J., Ahlquist, P., 2001. Identification of sequences in Brome mosaic virus replicase protein 1a that mediate association with endoplasmic reticulum membranes. J Virol 75, 12370-12381.

Dougherty, D.A., 1996. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163-168.

Dougherty, D.A., 2007. Cation-pi interactions involving aromatic amino acids. J Nutr 137, 1504S-1508S; discussion 1516S-1517S.

Fabrega, C., Hausmann, S., Shen, V., Shuman, S., Lima, C.D., 2004. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell 13, 77-89.

Han, Y.T., Tsai, C.S., Chen, Y.C., Lin, M.K., Hsu, Y.H., Meng, M., 2007. Mutational analysis of a helicase motif-based RNA 5''-triphosphatase/NTPase from bamboo mosaic virus. Virology 367, 41-50.

Hodel, A.E., Gershon, P.D., Shi, X., Quiocho, F.A., 1996. The 1.85 A structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85, 247-256.

Huang, Y.L., Han, Y.T., Chang, Y.T., Hsu, Y.H., Meng, M., 2004. Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of bamboo mosaic virus. J Virol 78, 1271-1280.

Huang, Y.L., Hsu, Y.H., Han, Y.T., Meng, M., 2005. mRNA guanylation catalyzed by the S-adenosylmethionine-dependent guanylyltransferase of bamboo mosaic virus. J Biol Chem 280, 13153-13162.

Issur, M., Geiss, B.J., Bougie, I., Picard-Jean, F., Despins, S., Mayette, J., Hobdey, S.E., Bisaillon, M., 2009. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. Rna 15, 2340-2350.

Jiang, Y., Serviene, E., Gal, J., Panavas, T., Nagy, P.D., 2006. Identification of essential host factors affecting tombusvirus RNA replication based on the yeast Tet promoters Hughes Collection. J Virol 80, 7394-7404.

Kong, F., Sivakumaran, K., Kao, C., 1999. The N-terminal half of the brome mosaic virus 1a protein has RNA capping-associated activities: specificity for GTP and S-adenosylmethionine. Virology 259, 200-210.

Kushner, D.B., Lindenbach, B.D., Grdzelishvili, V.Z., Noueiry, A.O., Paul, S.M., Ahlquist, P., 2003. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc Natl Acad Sci USA 100, 15764-15769.

Lan, P., Yeh, W.B., Tsai, C.W., Lin, N.S., 2010. A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Mol Plant Microbe Interact 23, 903-914.

Lee, W.M., Ahlquist, P., 2003. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein. J Virol 77, 12819-12828.

Li, Y.I., Chen, Y.J., Hsu, Y.H., Meng, M., 2001. Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. J Virol 75, 782-788.

Li, Y.I., Cheng, Y.M., Huang, Y.L., Tsai, C.H., Hsu, Y.H., Meng, M., 1998. Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. J Virol 72, 10093-10099.

Li, Y.I., Cheng, Y.M., Huang, Y.L., Tsai, C.H., Hsu, Y.H., Meng, M., 1998. Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. J Virol 72, 10093-10099.

Li, Y.I., Shih, T.W., Hsu, Y.H., Han, Y.T., Huang, Y.L., Meng, M., 2001. The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5'' cap structure by exhibiting RNA 5''-triphosphatase activity. J Virol 75, 12114-12120.

Li, Z., Nagy, P.D., 2011. Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biol 8, 305-315.

Lin, J.W., Ding, M.P., Hsu, Y.H., Tsai, C.H., 2007. Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res 35, 424-432.

Lin, M.K., Chang, B.Y., Liao, J.T., Lin, N.S., Hsu, Y.H., 2004. Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. J Gen Virol 85, 251-259.

Lin, M.T., Kitajima, E.W., Cupertino, F.P., Costa, C.L., 1977. Partial purification and some properties of bamboo mosaic virus. Phytopathology 82, 731-734.

Lin, N.S., Jair, Y.R., Chang, T.Y., Hsu, Y.H., 1993. Incidence of bamboo mosaic potexvirus in Taiwan. Plant Dis 77, 448-450.

Lin, N.S., Lin, B.Y., Lo, N.W., Hu, C.C., Chow, T.Y., Hsu, Y.H., 1994. Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J Gen Virol 75 ( Pt 9), 2513-2518.

Linder, P., 2003. Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol Cell 95, 157-167.

Magden, J., Takeda, N., Li, T., Auvinen, P., Ahola, T., Miyamura, T., Merits, A., Kaariainen, L., 2001. Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J Virol 75, 6249-6255.

Martin, J.L., McMillan, F.M., 2002. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12, 783-793.

Martin, S.A., Paoletti, E., Moss, B., 1975. Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J Biol Chem 250, 9322-9329.

Merits, A., Kettunen, R., Makinen, K., Lampio, A., Auvinen, P., Kaariainen, L., Ahola, T., 1999. Virus-specific capping of tobacco mosaic virus RNA: methylation of GTP prior to formation of covalent complex p126-m7GMP. FEBS letters 455, 45-48.

Miller, S., Krijnse-Locker, J., 2008. Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6, 363-374.

Mitchell, S.F., Walker, S.E., Algire, M.A., Park, E.H., Hinnebusch, A.G., Lorsch, J.R., 2010. The 5''-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mol Cell 39, 950-962.

Niles, E.G., Condit, R.C., Caro, P., Davidson, K., Matusick, L., Seto, J., 1986. Nucleotide sequence and genetic map of the 16-kb vaccinia virus HindIII D fragment. Virology 153, 96-112.

Niles, E.G., Lee-Chen, G.J., Shuman, S., Moss, B., Broyles, S.S., 1989. Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology 172, 513-522.

Ogino, T., Banerjee, A.K., 2007. Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell 25, 85-97.

Osman, T.A., Buck, K.W., 1997. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J Virol 71, 6075-6082.

Panavas, T., Serviene, E., Brasher, J., Nagy, P.D., 2005. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc Natl Acad Sci USA 102, 7326-7331.

Prasanth, K.R., Huang, Y.W., Liou, M.R., Wang, R.Y., Hu, C.C., Tsai, C.H., Meng, M., Lin, N.S., Hsu, Y.H., 2011. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA. J Virol.

Price, B.D., Rueckert, R.R., Ahlquist, P., 1996. Complete replication of an animal virus and maintenance of expression vectors derived from it in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93, 9465-9470.

Raghavan, V., Malik, P.S., Choudhury, N.R., Mukherjee, S.K., 2004. The DNA-A component of a plant geminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J Virol 78, 2405-2413.

Rozanov, M.N., Koonin, E.V., Gorbalenya, A.E., 1992. Conservation of the putative methyltransferase domain: a hallmark of the ''Sindbis-like'' supergroup of positive-strand RNA viruses. J Gen Virol 73 ( Pt 8), 2129-2134.

Schubert, H.L., Phillips, J.D., Hill, C.P., 2003. Structures along the catalytic pathway of PrmC/HemK, an N5-glutamine AdoMet-dependent methyltransferase. Biochemistry 42, 5592-5599.

Shuman, S., 1995. Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol 50, 101-129.

Shuman, S., Schwer, B., 1995. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol Microbiol 17, 405-410.

Shuman, S., Surks, M., Furneaux, H., Hurwitz, J., 1980. Purification and characterization of a GTP-pyrophosphate exchange activity from vaccinia virions. Association of the GTP-pyrophosphate exchange activity with vaccinia mRNA guanylyltransferase . RNA (guanine-7-)methyltransferase complex (capping enzyme). J Biol Chem 255, 11588-11598.

Taylor, D.N., Carr, J.P., 2000. The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 kDa replicase proteins of tobacco mosaic virus in the yeast two-hybrid system. J Gen Virol 81, 1587-1591.

van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., 2008. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 4, e1000054.

Verchot-Lubicz, J., Ye, C.M., Bamunusinghe, D., 2007. Molecular biology of potexviruses: recent advances. J Gen Virol 88, 1643-1655.

Volpon, L., Osborne, M.J., Capul, A.A., de la Torre, J.C., Borden, K.L., 2010. Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E. Proc Natl Acad Sci USA 107, 5441-5446.

Wung, C.H., Hsu, Y.H., Liou, D.Y., Huang, W.C., Lin, N.S., Chang, B.Y., 1999. Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. J Gen Virol 80 ( Pt 5), 1119-1126.

Yang, C.C., Liu, J.S., Lin, C.P., Lin, N.S., 1977. Nucleotide sequence and phylogenetic analysis of a bamboo mosaic potexvirus isolated from common bamboo (Bambusa vulgaris McClure). Bot bull Acad Sin 38, 77-84.

Yeh, C.C., Cheng, A.H., Hwang, H.Y., 1993. Indexing of bamboo mosaic virus and propagation of virus-free bamboo. In "Proceedings of the Symposium on Plant Virus and Virus-like Diseases, Council of Agriculture, Plant Protection Series No. 1." (R.-J. Chiu and Y. Yeh, eds). 275-281.

Zhao, K.N., Frazer, I.H., 2002. Replication of bovine papillomavirus type 1 (BPV-1) DNA in Saccharomyces cerevisiae following infection with BPV-1 virions. J Virol 76, 3359-3364.

Zheng, S., Hausmann, S., Liu, Q., Ghosh, A., Schwer, B., Lima, C.D., Shuman, S., 2006. Mutational analysis of Encephalitozoon cuniculi mRNA cap (guanine-N7) methyltransferase, structure of the enzyme bound to sinefungin, and evidence that cap methyltransferase is the target of sinefungin''s antifungal activity. J Biol Chem 281, 35904-35913.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top