跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宗穎
研究生(外文):LIN, ZONG-YING
論文名稱:混合酸酯化反應蒸餾系統之最佳化設計
論文名稱(外文):Optimal Design of Mixed Acid Esterification System
指導教授:程學恒
指導教授(外文):CHENG, SHUEH-HEN
口試委員:陳錫仁張煖劉佳霖
口試委員(外文):CHEN, HSI-JENCHANG, HSUANLIU, JIA-LIN
口試日期:2016-07-22
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:121
中文關鍵詞:反應蒸餾內隔板式蒸餾
外文關鍵詞:Mixed Acid Esterification System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
反應蒸餾程序具有節省設備成本,以及提昇反應轉化率的特色,而內隔板式蒸餾程序則除了可減少設備成本之外,同時具有節能效果,本研究即以甲醇與混合酸進行酯化反應之系統為例,探討了反應蒸餾系統之設計與最適化,製程主要目的乃為了生產純度98 wt%乙酸甲酯及純度99 mole%丙酸甲酯,並移除廢水產物,其中傳統蒸餾程序以最小年總成本為目標而進行最適化,深入探討了甲醇過量比(Rm)對該製程最適化之影響,發現當Rm值介於1與1.022之間時,可以使用兩支蒸餾塔達到設定之規格,而Rm值高於1.022時,則需三支塔方能達到設定之規格,在Rm值設定為1.022,可得到最佳的傳統反應蒸餾程序所對應之最佳Rm值。
在另一方面,吾人同時以最適之傳統反應蒸餾程序為基礎,轉換成內隔板式反應蒸餾程序,並加以最適化,結果顯示在再沸器總負荷量方面,內隔板式反應蒸餾程序相較於傳統反應蒸餾程序節省了49.1%,而在總年成本方面,內隔板式反應蒸餾程序相較於傳統反應蒸餾程序減少了15.1%,最後吾人發現內隔板式反應蒸餾在節能方面與年總成本方面皆優於傳統蒸餾程序。

Reduced equipment costs and increased conversions are notable features of reactive distillation processes. On the other hand, dividing-wall distillation units can not only reduce equipment costs, but also save energy. In the context, this study explores the design and optimization of a reactive distillation system involving the esterification of mixed acids with methanol. The main purpose of the process is to produce 98 wt% methyl acetate and 99 mole% methyl propionate, and to remove wastewater at the same time. A conventional reactive distillation process is designed and optimized with the goal of minimizing its total annual cost (TAC), and the effect of methanol to mixed acid ratio (Rm) is explored in the process optimization. It has been shown that when 1 ≤ Rm ≤ 1.022, only two columns are needed to achieve the specified product purities. However, when Rm is larger than 1.022, an additional column is required. It has been found an optimal conventional reactive distillation (RD) system can be obtained when Rm is set at 1.022.
On the other hand, the optimal RD system can be transformed to a reactive dividing-wall column (R-DWC) scheme. It can be done with an iterative optimization procedure. The optimized R-DWC scheme revealing a 49.1% reduction in total reboiler duty can be realized, when compared with the optimal conventional RD scheme. In terms of TAC, the R-DWC scheme is also favored with a TAC that is 15.1% less than that of the RD scheme.

中文摘要
Abstract
誌謝
目錄
表目錄
圖目錄
第一章 緒論
1.1前言與動機
1.2論文組織與架構
第二章 文獻回顧
第三章 熱力學與動力學模式
3.1前言
3.2熱力學模式
3.3動力學模式
第四章 混合酸酯化反應系統之設計
4.1傳統反應蒸餾系統設計
4.1.1設計概念
4.1.2流程設計
4.1.3最適化步驟
4.1.4最適化結果
4.1.5溫度分佈與濃度分佈探討
4.1.6甲醇的過量比對混合酸酯化反應之探討
4.2內隔板式反應蒸餾程序
4.2.1概念設計
4.2.2系統流程設計與最適化
4.2.3最適化結果
4.2.4溫度分佈與濃度分佈探討
4.3模擬結果比較
第五章 結論
符號說明
參考文獻
附錄 A 總年成本之估算
附錄 B 2015年化工廠成本指數
附錄 C 設備成本參數值
簡 歷


1.Agrawal, R., A method to draw fully thermally coupled distillation column configurations for multicomponent distillation, Chem. Eng. Res. Des. 78 (2000) 454-464.

2.Agrawal, R., Synthesis of distillation column configurations for a multicomponent separation, Ind. Eng. Chem. Res. 35 (1996) 1059-1071.

3.An, D.; Cai, W.; Xia, M.;Zhang, X.; Wang, F., Design and control of reactive dividing-wall column for the production of methyl acetate, Chem. Eng. Process. 92 (2015) 45-60.

4.Asprion, N.; Kaibel, G., Dividing wall columns: Fundamentals and recent advances, Chem. Eng. Process. 49 (2010) 139-146.

5.Dai, X.; Ye, Q.; Yu, H.; Suo, X.; Li, R., Design and control of dividing-wall column for the synthesis of n-propyl propionate by reactive distillation, Ind. Eng. Chem. Res. 54 (2015) 3919-3932.

6.Dünnebier, G.; Pantelides, C. C., Optimal design of thermally coupled distillation columns, Ind. Eng. Chem. Res. 38 (1999) 162- 176.

7.Dejanović, I.; Halvorsen, I. J.; Skogestad, S.; Jansen, H.; Olujić, Ž., Hydraulic design, technical challenges and comparison of alternative configurations of a four-product dividing wall column, Chem. Eng. Process. 84 (2014) 71-81.

8.Dejanović, I.; Matijašević, L.; Halvorsen, I. J.; Skogestad, S.; Jansen, H.; Kaibel, B.; Olujić, Ž., Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture, Chem. Eng. Res. Des. 89 (2011) 1155-1167.

9.Dejanović, I.; Matijašević, L.; Jansen, H.; Olujić, Z., Designing a packed dividing wall column for an aromatics processing plant, Ind. Eng. Chem. Res. 50 (2011) 5680-5692.

10.Dejanović, I.; Matijašević, L.; Olujić, Ž., Dividing wall column—A breakthrough towards sustainable distilling, Chem. Eng. Process. 49 (2010) 559-580.

11.Dejanović I.; Halvorsen I. J.; Skogestad S.; Jansen H.; Olujić, Ž., Cost-effective design of energy efficient four-product dividing wall columns, Chem. Eng. Trans. 35 (213) 283-288.

12.Delgado-Delgado, R.; Hernández, S.; Barroso-Muñoz, F. O.; Segovia-Hernández, J. G.; Castro-Montoya, A. J., From simulation studies to experimental tests in a reactive dividing wall distillation column, Chem. Eng. Res. Des. 90 (2012) 855-862.

13.Dwivedi, D.; Halvorsen, I. J.; Skogestad, S., Control structure selection for four-product Petlyuk column, Chem. Eng. Process. 67 (2013) 49-59.

14.Dwivedi, D.; Strandberg, J. P.; Halvorsen, I. J.; Skogestad, S., Steady state and dynamic operation of four-product dividing-wall (Kaibel) columns: experimental verification, Ind. Eng. Chem. Res. 51 (2012) 15696-15709.

15.Errico, M.; Pirellas, P.; Rong, B. G.; Segovia-Hernandez, J. G., Alternative Petlyuk distillation configurations for the separation of four-component mixtures, Ind. Eng. Chem. Res. 54 (2015) 4788-4794.

16.Fidkowski, Z.; Krolikowski, L., Thermally coupled system of distillation columns: Optimization procedure, AIChE J. 32 (1986) 537-546.

17.Gómez-Castro, F. I.; Rodríguez-Ángeles, M. A.; Segovia−Hernández, J. G.;Hernández, S.; Gutiérrez-Antonio, C.; Briones-Ramírez, A.; Uribe Ramírez, A. R., Analysis of dynamic performance for multiple dividing wall distillation columns, Ind. Eng. Chem. Res. 52 (2013) 9922-9929.
18.Gmehling, J.; Onken, U., Vapor–liquid equilibrium data collection, Chemistry Data Series, DECHEMA, Frankfurt, Germany, 1977.

19.Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K., Azeotropic Data, Wiely-VCH, Weinheim, Gemany, 2004

20.Gmehling, J.; Onken, U.; Grenzheuser, P., Vapor–liquid equilibrium data collection, Chemistry Data Series, DECHEMA, Frankfurt, Germany, 1982.

21.Ghadrdan, M.; Halvorsen, I. J.; Skogestad, S., Manipulation of vapour split in Kaibel distillation arrangements, Chem. Eng. Process. 72 (2013) 10-23.

22.Ghadrdan, M.; Halvorsen, I. J.; Skogestad, S., Optimal operation of Kaibel distillation columns, Chem. Eng. Res. Des. 89 (2011) 1382-1391.

23.Hsieh, C. T. ; Lee, M. J. ; Lin, H. M., Vapor–liquid–liquid equilibria for aqueous systems with methyl acetate, methyl propionate, and methanol, Ind. Eng. Chem. Res. 47 (2008) 7927–7933.

24.Hsieh, C. T.; Ji, W. Y.; Lin, H.; Lee, M. J., Multiphase equilibria for mixtures containing water, acetic acid, propionic acid, methyl acetate and methyl propionate, Fluid Phase Equilib. 271 (2008) 69–75.

25.Halvorsen, I. J., Minimum energy requirements in complex distillation arrangements, NTNU. (2001).

26.Halvorsen, I. J.; Skogestad, S., Minimum energy consumption in multicomponent distillation. 1. Vmin diagram for a two-product column, Ind. Eng. Chem. Res. 42 (2003) 596-604.

27.Halvorsen, I. J.; Skogestas, S., Minimum energy consumption in multicomponent distillation. 2. Three-product petlyuk arrangements, Ind. Eng. Chem. Res. 42 (2003) 605-615.

28.Halvorsen, I. J.; Skogestad, S., Minimum energy consumption in multicomponent distillation. 3. More than three products and generalized petlyuk arrangements, Ind. Eng. Chem. Res. 42 (2003) 616-629.

29.Halvorsen, I. J.; Dejanović, I.; Skogestad, S.; Olujić, Ž., Internal configurations for a multi-product dividing wall column, Chem. Eng. Res. Des. 91 (2013) 1954-1965.

30.Halvorsen, I. J.; Skogestad, S., Energy efficient distillation, J. Nat. Gas Sci. Eng. 3 (2011) 571-580.

31.Harmsen, J., Process intensification in the petrochemicals industry: Drivers and hurdles for commercial implementation, Chem. Eng. Process. 49 (2010) 70-73.

32.Hernández, S.; Sandoval-Vergara, R.; Barroso-Muñoz, F. O.;Murrieta-Dueñas, R.; Hernández-Escoto, H.; Segovia-Hernández, J. G.;Rico-Ramirez, V., Reactive dividing wall distillation columns: Simulation and implementation in a pilot plant, Chem. Eng. Process. 48 (2009) 250-258.

33.Hernández, S.; Segovia-Hernández, J. G.; Juárez-Trujillo, L.; Estrada-Pacheco, J. E.; Maya-Yescas, R., Design Study of the Control of a Reactive Thermally coupled distillation sequence for the esterification of fatty organic acids, Chem. Eng. Commun. 198 (2010) 1-18.

34.Hayden, J. G.; O’Connell, J. P. A., A generalized method for predicting second virial coefficients, Ind. Eng. Chem. Process Des. Dev. 14 (1975) 209–216.

35.Ito, T.; Yoshida, F., Vapor–liquid equilibria of water-lower fatty acid systems: water-formic acid, water acetic acid and water-propionic acid, J. Chem. Eng. Data 8 (1963) 315–320.

36.Ignat, R. M.; Kiss, A. A., Optimal design, dynamics and control of a reactive DWC for biodiesel production, Chem. Eng. Res. Des. 91 (2013) 1760-1767.
37.Jana, A. K., Heat integrated distillation operation, Applied Energy. 87 (2010) 1477-1494.

38.Kaibel, B., Dividing-Wall Columns, (2014) 183-199.

39.Kang, D.; Lee, J. W., Graphical Design of Integrated Reaction and Distillation in Dividing Wall Columns, Ind. Eng. Chem. Res. 54 (2015) 3175-3185.

40.Kiss, A. A., Heat-integrated reactive distillation process for synthesis of fatty esters, Fuel Process. Technol. 92 (2011) 1288-1296.

41.Kiss, A. A., Reactive Distillation Technology, (2014) 41-65.

42.Kiss, A. A.; Bildea, C. S., A control perspective on process intensification in dividing-wall columns, Chem. Eng. Process. 50 (2011) 281-292.

43.Kiss, A. A.; Flores Landaeta, S. J.;Infante Ferreira, C. A., Towards energy efficient distillation technologies – Making the right choice, Energy. 47 (2012) 531-542.

44.Kiss, A. A.; Ignat, R. M., Enhanced methanol recovery and glycerol separation in biodiesel production – DWC makes it happen, Applied Energy. 99 (2012) 146-153.

45.Kiss, A. A.; Ignat, R. M.; Flores Landaeta, S. J.; De Haan, A. B., Intensified process for aromatics separation powered by Kaibel and dividing-wall columns, Chem. Eng. Process. 67 (2013) 39-48.

46.Kiss, A. A.; Rewagad, R. R., Energy efficient control of a BTX dividing-wall column, Comput. Chem. Eng. 35 (2011) 2896-2904.

47.Kiss, A. A.; Segovia-Hernández, J. G.; Bildea, C. S.; Miranda-Galindo, E. Y.; Hernández, S., Reactive DWC leading the way to FAME and fortune, Fuel. 95 (2012) 352-359.

48.Kiss, A. A.; Suszwalak, D. J. P. C., Innovative dimethyl ether synthesis in a reactive dividing-wall column, Comput. Chem. Eng. 38 (2012) 74-81.

49.Lee, H.-Y.; Lai, I. K.; Huang, H. P.; Chien, I. L., Design and control of thermally coupled reactive distillation for the production of isopropyl acetate, Ind. Eng. Chem. Res. 51 (2012) 11753-11763.

50.Long, N. V. D.; Lee, M., Review of retrofitting distillation columns using thermally coupled distillation sequences and dividing wall columns to improve energy efficiency, J. Chem. Eng. Jpn. 47 (2014) 87-108.

51.Luyben, W. L., Economic and Dynamic Impact of the Use of Excess Reactant in Reactive Distillation Systems, Ind. Eng. Chem. Res. 39 (2000) 2935-2946

52.Malijevska, I.; Sysova, M.; Vlckova, D., Vapour-liquid equilibrium in strongly associated systems. The systems acetic acid-propionic acid and acetic acid-trifluoroacetic acid, Collect. Czech. Chem. Comm. 51 (1986) 194–205.

53.Müller, I.; Kenig, E. Y., Numerische untersuchung der reaktiven trennwandkolonne am beispiel der methylacetat-hydrolyse. numerical investigation of the reactive dividing wall column exemplified by methyl acetate hydrolysis, Chem. Ing. Tech. 82 (2010) 2109-2118.

54.Olujić, Ž.; Jödecke, M.; Shilkin, A.; Schuch, G.; Kaibel, B., Equipment improvement trends in distillation, Chem. Eng. Process. 48 (2009) 1089-1104.

55.Premkumar, R.; Rangaiah, G. P., Retrofitting conventional column systems to dividing-wall columns, Chem. Eng. Res. Des. 87 (2009) 47-60.

56.Perry, R. H.; Green, D. W.; Maloney, J.O., Perry’s Chemical Engineer’s Handbook, McGraw-Hill, New York, 1984.

57.Renon, H.; Prausnitz, J. M., Local compositions in thermodynamic excess function for liquid mixtures, AIChE J. 14 (1968) 135–144.

58.Rewagad, R. R.; Kiss, A. A., Dynamic optimization of a dividing-wall column using model predictive control, Chem. Eng. Sci. 68 (2012) 132-142.

59.Rong, B.-G., Synthesis of dividing-wall columns (DWC) for multicomponent distillations—A systematic approach, Chem. Eng. Res. Des. 89 (2011) 1281-1294.

60.Sawistowski, H.; Pilavakis, P. A., Vapor–liquid equilibrium with association in both phases. Multicomponent systems containing acetic acid, J. Chem. Eng. Data 27 (1982) 64–71.

61.Schultz, M. A.; O'Brien, D. E.; Hoehn, R. K.; Luebke, C. P.; Stewart, D. G., Innovative flowschemes using dividing wall columns, Comput. Chem. Eng. 21 (2006) 695-700.

62.Stephenson, R.; Stuart, J., Mutual binary solubilities: water-alcohols and water- esters, J. Chem. Eng. Data 31 (1986) 56–70.

63.Sander, S.; Flisch, C.; Geissler, E.; Schoenmakers, H.; Ryll, O.; Hasse, H., Methyl acetate hydrolysis in a reactive divided wall column, Chem. Eng. Res. Des. 85 (2007) 149-154.

64.Shi, L.; Huang, K.; Wang, S.-J.; Yu, J.;Yuan, Y.; Chen, H.; Wong, D. S. H., Application of vapor recompression to heterogeneous azeotropic dividing-wall distillation columns, Ind. Eng. Chem. Res. 54 (2015) 11592-11609.

65.Staak, D.; Grützner, T.; Schwegler, B.; Roederer, D., Dividing wall column for industrial multi purpose use, Chem. Eng. Process. 75 (2014) 48-57.

66.Sun, L.; Bi, X., Shortcut method for the design of reactive dividing wall column, Ind. Eng. Chem. Res. 53 (2014) 2340-2347.

67.Sun, L. Y.; Chang, X. W.; Zhang, Y. M.; Li, J.; Li, Q. S., Reducing energy consumption and CO2 emissions in thermally coupled azeotropic distillation, Chemical Engineering & Technology. 33 (2010) 395-404.

68.Sargent, R. W. H.; Gaminibandara, K., Optimum Design of Plate Distillation Columns, Optimization in Action; Dixon, L. W. C., Ed.; Academic Press: London, (1976) 267-314.

69.Tsai, Y. T.; Lin, H.; Lee, M. J., Kinetics behavior of esterification of acetic acid with methanol over amberlyst 36, Chem. Eng. J. 171 (2011) 1367-1372.

70.Tsai, Y. T.; Lin, H.; Lee, M. J., Kinetics of catalytic esterification of propionic acid with methanol over amberlyst 36, Ind. Eng. Chem. Res. 50 (2010) 1171-1176.

71.Van Duc Long, N.; Lee, S.; Lee, M., Design and optimization of a dividing wall column for debottlenecking of the acetic acid purification process, Chem. Eng. Process. 49 (2010) 825-835.

72.Vazquez–Castillo, J. A.; Venegas–Sánchez, J. A.; Segovia–Hernández, J. G.;Hernández-Escoto, H.; Hernández, S.; Gutiérrez–Antonio, C.; Briones–Ramírez, A., Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures, Comput. Chem. Eng. 33 (2009) 1841-1850.

73.Wang, S. J.; Chen, W. Y.; Chang, W. T.; Hu, C. C.; Cheng, S. H., Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns, Chem. Eng. Process. 85 (2014) 108-124.

74.Wang, S. J.; Cheng, S. H.; Chiu, P. H.; Huang, K., Design and control of a thermally coupled reactive distillation process synthesizing diethyl carbonate, Ind. Eng. Chem. Res. 53 (2014) 5982-5995.

75.Wu, Y. C.; Lee, H. Y.; Huang, H. P.; Chien, I. L., Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems, Ind. Eng. Chem. Res. 53 (2014) 1537-1552.
76.Wu, Y. Y., Design and control of reactive distillation for parallel reactions system- methanol and mixed acids, Master’s Thesis, National Taiwan University, 2007.

77.Yildirim, Ö.; Kiss, A. A.; Kenig, E. Y., Dividing wall columns in chemical process industry: A review on current activities, Sep. Purif. Technol. 80 (2011) 403-417.

78.Zhai, J.; Liu, Y.; Li, L.; Zhu, Y.; Zhong, W.; Sun, L., Applications of dividing wall column technology to industrial-scale cumene production, Chem. Eng. Res. Des. 102 (2015) 138-149.

79.陳玟羽, 內隔板式反應蒸餾與共沸蒸餾程序之設計, 東海大學化學工程與材料工程研究所 (2013).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top