|
[1] Y. Amit. A nonlinear variational problem for image matching. SIAM Journal on Scientific Computing, 15(1):207–224, 1994. [2] J.L.R. Andersson, M. Jenkinson, S. Smith, and J. Andersson. Non-linear optimisation. fMRIb technical report tr07ja1, 2007. [3] Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A logeuclidean framework for statistics on diffeomorphisms. In Medical Image Computing and Computer-Assisted Intervention - Miccai 2006, Pt 1, volume 4190, pages 924–931. 2006. [4] J. Ashburner and K.J. Friston. Nonlinear spatial normalization using basis functions. Human brain mapping, 7(4):254–266, 1999. [5] J. Ashburner and K.J. Friston. Spatial normalization using basis functions. Human brain function, pages 655–672, 2003. [6] J. Ashburner and K.J. Friston. Diffeomorphic registration using geodesic shooting and gauss-newton optimisation. NeuroImage, 2011. [7] John Ashburner. A fast diffeomorphic image registration algorithm. NeuroImage, 38(1):95–113, 2007. [8] BB Avants, CL Epstein, M. Grossman, and JC Gee. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis, 12(1):26–41, 2008. [9] JC Baron, G. Chetelat, B. Desgranges, G. Perchey, B. Landeau, V. De La Sayette, and F. Eustache. In vivo mapping of gray matter loss with voxel-based morphometry in mild alzheimer’s disease. NeuroImage, 14(2):298–309, 2001. [10] M.F. Beg, M.I. Miller, A. Trouv, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2):139–157, 2005. [11] M.C. Chiang, R.A. Dutton, K.M. Hayashi, AW Toga, OL Lopez, HJ Aizenstein, JT Becker, and PM Thompson. Fluid registration of medical images using jensenrenyi divergence reveals 3d profile of brain atrophy in hiv/aids. pages 193–196. IEEE, 2006. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro. [12] G.E. Christensen and H.J. Johnson. Consistent image registration. IEEE Transactions on Medical Imaging, 20(7):568–582, 2001. [13] G.E. Christensen, R.D. Rabbitt, and M.I. Miller. 3d brain mapping using a deformable neuroanatomy. Physics in Medicine and Biology, 39:609, 1994. [14] G.E. Christensen, R.D. Rabbitt, and M.I. Miller. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435–1447, 1996. [15] A.C. Evans, D.L. Collins, SR Mills, ED Brown, RL Kelly, and TM Peters. 3d statistical neuroanatomical models from 305 MRI volumes. pages 1813–1817 vol. 3. IEEE, 1993. Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record. [16] A. Fornito, M. Ycel, J. Patti, SJ Wood, and C. Pantelis. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia research, 108(1-3):104–113, 2009. [17] P. Hellier and C. Barillot. Coupling dense and landmark-based approaches for nonrigid registration. IEEE Transactions on Medical Imaging, 22(2):217–227, 2003. [18] A. Klein, J. Andersson, B.A. Ardekani, J. Ashburner, B. Avants, M.C. Chiang, G.E. Christensen, D.L. Collins, J. Gee, and P. Hellier. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3):786–802, 2009. [19] Y.H. Lau, M. Braun, and B.F. Hutton. Non-rigid image registration using a medianfiltered coarse-to-fine displacement field and a symmetric correlation ratio. Physics in Medicine and Biology, 46:1297, 2001. [20] Kuo-Wei Lee. Construction of Customized Brain Template from Magnetic Resonance Images. Master’s thesis, 2011. [21] JA Little, DLG Hill, and DJ Hawkes. Deformations incorporating rigid structures. pages 104–113. IEEE, 1996. Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis. [22] Jia-Xiu Liu, Yong-Sheng Chen, and Li-Fen Chen. Fast and accurate registration techniques for affine and nonrigid alignment of mr brain images. Annals of Biomedical Engineering, 38(1):138–157, 2010. [23] T. Liu, D. Shen, and C. Davatzikos. Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 22(4):1790–1801, 2004. [24] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2):187–198, 1997. [25] M. Merschhemke, TN Mitchell, SL Free, A. Hammers, L. Kinton, A. Siddiqui, J. Stevens, B. Kendall, HJ Meencke, and JS Duncan. Quantitative MRI detects abnormalities in relatives of patients with epilepsy and malformations of cortical development. NeuroImage, 18(3):642–649, 2003. [26] W.H. Press and SA Teukolsky. Wtv: Numerical recipes in c: The art of scientific computing, 1992. [27] Martin Reuter, H. Diana Rosas, and Bruce Fischl. Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4):1181–1196, 2010. [28] A. Roche, G. Malandain, N. Ayache, and S. Prima. Towards a better comprehension of similarity measures used in medical image registration. pages 555–566. Springer, 1999. Medical Image Computing and Computer-Assisted Intervention - ICCAI’99. [29] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as a new similarity measure for multimodal image registration. Medical Image Computing and Computer-Assisted Interventation - MICCAI’98, pages 1115–1124, 1998. [30] P. Rogelj and S. Kovai. Symmetric image registration. Medical image analysis, 10(3):484–493, 2006. [31] G.K. Rohde, A. Aldroubi, and B.M. Dawant. The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging, 22(11):1470–1479, 2003. [32] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J. Hawkes. Nonrigid registration using free-form deformations: application to breast mr images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999. [33] D. Ruprecht, R. Nagel, and H. Mller. Spatial free-form deformation with scattered data interpolation methods. Computers and graphics, 19(1):63–71, 1995. [34] D.W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610, 1979. [35] D.W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K.L. Narr, R.A. Poldrack, R.M. Bilder, and A.W. Toga. Construction of a 3d probabilistic atlas of human cortical structures. NeuroImage, 39(3):1064–1080, 2008. [36] J.P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons. Medical image analysis, 2(3):243–260, 1998. [37] W.K. Thompson and D. Holland. Bias in tensor based morphometry stat-roi measures may result in unrealistic power estimates. NeuroImage, 57(1):1, 2011. [38] Tom Vercauteren, Xavier Pennec, Aymeric Perchant, and Nicholas Ayache. Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, 45(1):S61–S72, 2009. [39] MP Wand. Data-based choice of histogram bin width. American Statistician, pages 59–64, 1997. [40] H.Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in computational Mathematics, 4(1):389–396, 1995. [41] P.A. Yushkevich, B.B. Avants, S.R. Das, J. Pluta, M. Altinay, and C. Craige. Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in adni 3 t MRI data. NeuroImage, 50(2):434–445, 2010.
|