跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奭彥
研究生(外文):Lin, Shih-Yen
論文名稱:快速準確的微分同構對稱非剛性腦部磁振造影影像對位演算法
論文名稱(外文):A Fast and Accurate Algorithm for Diffeomorphic and Symmetric Non-rigid Registration of Brain Magnetic Resonance Images
指導教授:陳永昇陳永昇引用關係
指導教授(外文):Chen, Yong-Sheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:81
中文關鍵詞:對位微分同構磁振造影
外文關鍵詞:registrationdiffeomorphismmagnetic resonance image
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
於本論文中,我們提出了一個快速、精確、對稱且微分同構的核磁共振影像(MRI)對位演算法。我們利用一個對數-歐幾里德的架構以建立微分同構的模型,在此模型中,微分同構的李代數是由不隨時間變化的速度場表示,此速度場的模型是由多個具緊支撐的Wendland徑向基底函數的線性組合構成。最佳化所用的目標函數是由一有對稱性質的相關比及經過權重後的拉普拉斯算子模型組成。我們使用一具區域性及貪婪演算法性質的最佳化架構,藉以增進演算法的速度。在此架構中,我們使用一具對稱性的單純形演算法,來分別且逐一地找出各個徑向基函數的係數。為了在與仿射對位的結果合併時仍能保有整體對稱性,我們設計出一個應用“中途空間”概念的架構。藉由此架構,如果使用具對稱性的仿射對位演算法,則能確保整體對位流程也具對稱性。我們使用一個階層式的架構以增加演算法的速度及準確度,在此架構中,徑向基底函數是以由粗略至精細的順序逐一地被部署及估計。我們利用LPBA40數據集的40個T1-權重MRI影像的共1560對影像對的對位以驗證本論文提出的演算法。經由驗證可得知此演算法完全滿足微分同構的性質,且對稱性的誤差也小於體素寬度。為了驗證準確度,我們利用Klein等人於2010年提出的驗證架構評估本演算法,並與其他14種對位演算法進行比較。驗證結果顯示本演算法的中位目標重疊值高於全部14個演算法。另外,在使用5層規模級別時,本演算法較14種演算法中所有具微分同構性質者快速。
Abstract

A fast symmetric and diffeomorphic non-rigid registration algorithm for magnetic resonance images (MRIs) is proposed in this work. A log-Euclidean framework is used to model diffeomorphisms, in which the Lie Algebra of the diffeomorphism is modeled by time-invariant velocity fields. The velocity fields are modeled using linear combinations of compactly-supported Wendland radial basis functions. A symmetric correlation ratio combined with a weighted Laplacian model is used as the objective function for optimization. We used a greedy local optimization scheme to increase the speed of the algorithm. In this setup, a symmetric downhill simplex method is used to estimate the coefficient of each radial basis function separately and consecutively. To incorporate the result of initial affine registration while maintaining overall symmetry, a framework utilizing the concept of “halfway space” is devised. This framework can ensure overall symmetry if the affine registration algorithm is symmetric. To increase the speed and accuracy, we used a hierarchical framework in which the RBFs are deployed and estimated in a coarse-to-fine manner. The proposed algorithm was evaluated using the results of 1560 pairwise registrations of 40 T1-weighted MRIs in LPBA40 dataset. According to the evaluation results, the proposed algorithm is completely diffeomorphic and has sub-voxel accuracy in terms of symmetry. The accuracy of the proposed algorithm was evaluated and compared with 14 registration methods using the evaluation framework by Klein et al., 2010. The median target overlap of the proposed algorithm using LPBA40 dataset is higher than all 14 registration methods. In addition, the proposed algorithm is faster than all diffeomorphic registration methods in the comparison when using 5 scale levels.

Chapter 1 Introduction 1
1.1 Backgrounds 2
1.2 Small-Deformation Registration Frameworks 3
1.3 Diffeomorphic Registration frameworks 4
1.4 Symmetric Registration 4
1.5 Motivation 5
1.6 Thesis Overview 6
2 Background Knowledge and Related Works 7
2.1 Diffeomorphisms and Lie Algebra 8
2.2 Models of Diffeomorphisms 10
2.3 Basis Functions 12
Chapter 3 Methods 13
3.1 Model of Diffeomorphism 14
3.2 Radial Basis Functions 14
3.3 The Objective Function 16
3.3.1 The Likelihood Term 17
3.3.2 The Prior Term 23
3.4 Optimization 24
3.4.1 Local Optimization Scheme 24
3.4.2 Optimization Algorithm 25
3.5 Incorporation of Affine Registrations 26
3.6 A Hierarchical Framework 29
Chapter 4 Implementation Issues 35
4.1 Solving Partial Differential Equations 36
4.2 Re-sampling Algorithms 37
4.2.1 Nearest Neighbor Interpolation 38
4.2.2 Trilinear Interpolation 38
4.2.3 Tricubic Interpolation 41
4.2.4 Sinc Interpolation 42
4.3 The Evaluation Point Set 44
4.4 The Selection of Bin Width 45
Chapter 5 Results 49
5.1 Data and Registration 50
5.2 Evaluation of Diffeomorphism 50
5.3 Evaluation of Symmetry 53
5.4 Evaluation of Accuracy 57
5.5 Evaluation of Speed 58
Chapter 6 Discussion 65
6.1 Validity of Evaluation Results 66
6.2 Robustness of Symmetry 67
6.3 Effect of Basis Functions on Accuracy 69
6.4 Similarity Measure 70
Chapter 7 Conclusion 75
Bibliography 77

[1] Y. Amit. A nonlinear variational problem for image matching. SIAM Journal on Scientific Computing, 15(1):207–224, 1994.
[2] J.L.R. Andersson, M. Jenkinson, S. Smith, and J. Andersson. Non-linear optimisation. fMRIb technical report tr07ja1, 2007.
[3] Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A logeuclidean framework for statistics on diffeomorphisms. In Medical Image Computing and Computer-Assisted Intervention - Miccai 2006, Pt 1, volume 4190, pages 924–931. 2006.
[4] J. Ashburner and K.J. Friston. Nonlinear spatial normalization using basis functions. Human brain mapping, 7(4):254–266, 1999.
[5] J. Ashburner and K.J. Friston. Spatial normalization using basis functions. Human brain function, pages 655–672, 2003.
[6] J. Ashburner and K.J. Friston. Diffeomorphic registration using geodesic shooting and gauss-newton optimisation. NeuroImage, 2011.
[7] John Ashburner. A fast diffeomorphic image registration algorithm. NeuroImage, 38(1):95–113, 2007.
[8] BB Avants, CL Epstein, M. Grossman, and JC Gee. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis, 12(1):26–41, 2008.
[9] JC Baron, G. Chetelat, B. Desgranges, G. Perchey, B. Landeau, V. De La Sayette, and F. Eustache. In vivo mapping of gray matter loss with voxel-based morphometry in mild alzheimer’s disease. NeuroImage, 14(2):298–309, 2001.
[10] M.F. Beg, M.I. Miller, A. Trouv, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2):139–157, 2005.
[11] M.C. Chiang, R.A. Dutton, K.M. Hayashi, AW Toga, OL Lopez, HJ Aizenstein, JT Becker, and PM Thompson. Fluid registration of medical images using jensenrenyi divergence reveals 3d profile of brain atrophy in hiv/aids. pages 193–196. IEEE, 2006. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro.
[12] G.E. Christensen and H.J. Johnson. Consistent image registration. IEEE Transactions on Medical Imaging, 20(7):568–582, 2001.
[13] G.E. Christensen, R.D. Rabbitt, and M.I. Miller. 3d brain mapping using a deformable neuroanatomy. Physics in Medicine and Biology, 39:609, 1994.
[14] G.E. Christensen, R.D. Rabbitt, and M.I. Miller. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435–1447, 1996.
[15] A.C. Evans, D.L. Collins, SR Mills, ED Brown, RL Kelly, and TM Peters. 3d statistical neuroanatomical models from 305 MRI volumes. pages 1813–1817 vol. 3. IEEE, 1993. Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record.
[16] A. Fornito, M. Ycel, J. Patti, SJ Wood, and C. Pantelis. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia research, 108(1-3):104–113, 2009.
[17] P. Hellier and C. Barillot. Coupling dense and landmark-based approaches for nonrigid registration. IEEE Transactions on Medical Imaging, 22(2):217–227, 2003.
[18] A. Klein, J. Andersson, B.A. Ardekani, J. Ashburner, B. Avants, M.C. Chiang, G.E. Christensen, D.L. Collins, J. Gee, and P. Hellier. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3):786–802, 2009.
[19] Y.H. Lau, M. Braun, and B.F. Hutton. Non-rigid image registration using a medianfiltered coarse-to-fine displacement field and a symmetric correlation ratio. Physics in Medicine and Biology, 46:1297, 2001.
[20] Kuo-Wei Lee. Construction of Customized Brain Template from Magnetic Resonance Images. Master’s thesis, 2011.
[21] JA Little, DLG Hill, and DJ Hawkes. Deformations incorporating rigid structures. pages 104–113. IEEE, 1996. Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.
[22] Jia-Xiu Liu, Yong-Sheng Chen, and Li-Fen Chen. Fast and accurate registration techniques for affine and nonrigid alignment of mr brain images. Annals of Biomedical Engineering, 38(1):138–157, 2010.
[23] T. Liu, D. Shen, and C. Davatzikos. Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 22(4):1790–1801, 2004.
[24] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2):187–198, 1997.
[25] M. Merschhemke, TN Mitchell, SL Free, A. Hammers, L. Kinton, A. Siddiqui, J. Stevens, B. Kendall, HJ Meencke, and JS Duncan. Quantitative MRI detects abnormalities in relatives of patients with epilepsy and malformations of cortical development. NeuroImage, 18(3):642–649, 2003.
[26] W.H. Press and SA Teukolsky. Wtv: Numerical recipes in c: The art of scientific computing, 1992.
[27] Martin Reuter, H. Diana Rosas, and Bruce Fischl. Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4):1181–1196, 2010.
[28] A. Roche, G. Malandain, N. Ayache, and S. Prima. Towards a better comprehension of similarity measures used in medical image registration. pages 555–566. Springer, 1999. Medical Image Computing and Computer-Assisted Intervention - ICCAI’99.
[29] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as a new similarity measure for multimodal image registration. Medical Image Computing and Computer-Assisted Interventation - MICCAI’98, pages 1115–1124, 1998.
[30] P. Rogelj and S. Kovai. Symmetric image registration. Medical image analysis, 10(3):484–493, 2006.
[31] G.K. Rohde, A. Aldroubi, and B.M. Dawant. The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging, 22(11):1470–1479, 2003.
[32] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J. Hawkes. Nonrigid registration using free-form deformations: application to breast mr images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.
[33] D. Ruprecht, R. Nagel, and H. Mller. Spatial free-form deformation with scattered data interpolation methods. Computers and graphics, 19(1):63–71, 1995.
[34] D.W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610, 1979.
[35] D.W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K.L. Narr, R.A. Poldrack, R.M. Bilder, and A.W. Toga. Construction of a 3d probabilistic atlas of human cortical structures. NeuroImage, 39(3):1064–1080, 2008.
[36] J.P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons. Medical image analysis, 2(3):243–260, 1998.
[37] W.K. Thompson and D. Holland. Bias in tensor based morphometry stat-roi measures may result in unrealistic power estimates. NeuroImage, 57(1):1, 2011.
[38] Tom Vercauteren, Xavier Pennec, Aymeric Perchant, and Nicholas Ayache. Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, 45(1):S61–S72, 2009.
[39] MP Wand. Data-based choice of histogram bin width. American Statistician, pages 59–64, 1997.
[40] H.Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in computational Mathematics, 4(1):389–396,
1995.
[41] P.A. Yushkevich, B.B. Avants, S.R. Das, J. Pluta, M. Altinay, and C. Craige. Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in adni 3 t MRI data. NeuroImage, 50(2):434–445, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝筑虹、黃永寬(2007)。家長參與親子休閒運動對幼兒運動行為影響之初探。幼兒運動遊戲年刊,2, 41 -45。
2. 謝筑虹、黃永寬(2007)。家長參與親子休閒運動對幼兒運動行為影響之初探。幼兒運動遊戲年刊,2, 41 -45。
3. 謝筑虹、黃永寬(2007)。家長參與親子休閒運動對幼兒運動行為影響之初探。幼兒運動遊戲年刊,2, 41 -45。
4. 鍾志強(2005)。休閒運動態度對休閒運動參與的影響。雲科大體育,8,151-167。
5. 謝偉雄(2010)。探討大專生身體質量指數、自尊、身體意象、社會影響因素與運動行為之相關研究。雲科大體育,12,99-110。
6. 謝偉雄(2010)。探討大專生身體質量指數、自尊、身體意象、社會影響因素與運動行為之相關研究。雲科大體育,12,99-110。
7. 謝偉雄(2010)。探討大專生身體質量指數、自尊、身體意象、社會影響因素與運動行為之相關研究。雲科大體育,12,99-110。
8. 鍾志強(2005)。休閒運動態度對休閒運動參與的影響。雲科大體育,8,151-167。
9. 鍾志強(2005)。休閒運動態度對休閒運動參與的影響。雲科大體育,8,151-167。
10. 龍炳峰(2000)。國民小學學童規律運動及其相關因素之研究。體育學報,29,81-91。
11. 龍炳峰(2000)。國民小學學童規律運動及其相關因素之研究。體育學報,29,81-91。
12. 龍炳峰(2000)。國民小學學童規律運動及其相關因素之研究。體育學報,29,81-91。
13. 盧俊宏(2002)。規律運動、心理健康、和生活品質。國民體育季刊,31(1), 60-73。
14. 盧俊宏(2002)。規律運動、心理健康、和生活品質。國民體育季刊,31(1), 60-73。
15. 盧俊宏(2002)。規律運動、心理健康、和生活品質。國民體育季刊,31(1), 60-73。