跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林岳霆
研究生(外文):Yueh-Ting Lin
論文名稱:氮化鎵上氮化鋁之表面聲波振盪器對環境紫外光感測之特性研究
論文名稱(外文):Fabrication study of UV sensors made of AlN/GaN SAW oscillator
指導教授:高慧玲高慧玲引用關係
指導教授(外文):Hui-Ling Kao
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:紫外光偵測器表面聲波振盪器迴旋濺鍍系統氮化鋁表面聲波元件氮化鎵
外文關鍵詞:SAW oscillatorultraviolet sensorHelicon sputtering systemSurface acoustic wave (SAW)GaNAlN
相關次數:
  • 被引用被引用:3
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於一般民用產業及國防工業都需使用更好的紫外光感測器,以用於半導體製程監控(微影儀器校正)、太空通訊、臭氧層的破洞監測、紫外光天文學、火焰感測器、飛彈偵測以及空對空安全通信等應用,這些應用皆需具有高緊密度、高敏感度、高精密性、低功率耗損及高穩定性等特點。
現今的表面聲波元件已被廣泛地應用在各通訊產業上,另外也因為其高靈敏度適用在各類感測器上,而在製作紫外光感測器上,因為氮化鎵與氮化鋁具有寬能隙、低暗電流及高響應度等特性而倍受矚目,本文利用迴旋濺鍍系統在氮化鎵基板上沉積氮化鋁薄膜以製作表面聲波元件,由於氮化鋁薄膜與氮化鎵間晶格不匹配較小(~2.4%),因此能在氮化鎵基板上沉積結晶性較佳的氮化鋁薄膜,並且能改善氮化鎵表面聲波元件之特性,並與半導體、光電產業做結合。本文以此結構製成表面聲波振盪器,探討紫外光之波段及強度對頻率響應及直流特性上之影響,由實驗結果得知,本實驗室所成長之氮化鋁薄膜具有低暗電流(2.58×10-10 A,在10V偏壓下),而表面聲波振盪器具有可偵測波長365nm光源強度之能力。
In recent year, ultraviolet (UV) sensors are attractive due to various civil and military applications, such as semiconductor fabrication (lithography) monitoring、satellite communications、ozone layer monitoring、UV astronomy、flame detection、missile warning and space-to-space communications. High durability、high sensitivity、high compactness、low power and high reliability are critical requirements.
The surface acoustic wave (SAW) device has been used in modern communication. In addition, it suits to be sensors for its high sensitivity. In the region of UV sensors, GaN and AlN are most popular materials because of their wide bandgap、low dark current and high responsivity. In this thesis, AlN thin films were deposited on GaN/Sapphire at the low temperature of 300�aC for SAW devices by using Helicon sputtering system. Due to the small lattice mismatch between AlN and GaN, epitaxial AlN films can be obtained on GaN. Superior SAW characteristics have been observed and demonstrated by depositing AlN on GaN. The thin film layered structure for SAW devices, with the combination of AlN and GaN may, in future, bring about the development of high frequency components which integrate and utilize their semiconducting, optoelectronic properties. The thesis presents a SAW oscillator using this structure. The output frequency of oscillator and the characteristic DC responded to the UV illumination with various wavelengths and intensity will be explored.
目錄
中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XII

第一章 緒論 1
1-1 前言 1
1-2 研究背景與目的 1
第二章 原理 7
2-1 表面聲波元件 7
2-1-1 壓電效應 7
2-1-2壓電材料 9
2-1-2-1 氮化鋁的結構與特性 10
2-1-2-2 氮化鎵的結構與特性 11
2-1-3 表面聲波元件基本原理 13
2-2 表面聲波元件參數 14
2-2-1 波速(Vp) 15
2-2-2 插入耗損(Insertion Loss) 15
2-2-3 機電耦合係數(K2) 16
2-2-4 溫度頻率係數(TCF) 17
2-3 表面聲波元件之感測原理 17
2-3-1 動能密度(Kinetic Energy Density) 18
2-3-2 表面聲波傳遞的干擾 19
2-3-2-1 質量負載效應(MASS LOADING) 23
2-3-2-2 聲電響應(ACOUSTOELECTRIC RESPONSE) 25
2-3-3 光吸收 29
2-3-3-1 光子吸收係數 30
2-3-3-2 電子-電洞對產生速率 32
2-3-4 光吸收與頻率響應之關係 33
第三章 元件製作與量測 35
3-1 氮化鋁薄膜沉積 35
3-1-1 基板清洗 35
3-1-2 氮化鋁薄膜沉積 36
3-1-2-1 迴旋波濺鍍 36
3-1-2-2 迴旋濺鍍系統架構 38
3-1-2-3 薄膜沉積 39
3-1-2-4氮化鋁薄膜分析 41
3-2 層狀結構表面聲波元件之製作 44
3-2-1 指差電極的設計與參數 44
3-2-2 微影蝕刻 45
3-3 頻率響應量測 48
3-3-1 S參數 49
3-3-2 量測校正 51
3-4 表面聲波振盪器 52
第四章 光感測實驗與分析 56
4-1 表面聲波振盪器穩定度測試 56
4-2 光感測實驗 58
4-2-1 紫外線燈光源之感測 59
4-2-1-1 導電率之改變 60
4-2-1-2 表面聲波元件頻率響應之改變 61
4-2-1-3 表面聲波振盪器之感測 61
4-2-2 氘燈光源之感測 64
4-2-2-1 導電率之改變 66
4-3 實驗結果討論 67
第五章 結論 71
5-1 結論 71
5-2 未來展望 71
參考文獻 73

圖目錄
圖2-1 表面聲波在彈性固體上運動 7
圖2-2 正壓電效應 8
圖2-3 逆壓電效應 9
圖2-4 氮化鋁基本結構 11
圖2-5 氮化鎵基本結構 13
圖2-6 表面聲波元件傳輸特性 14
圖2-7 機械波傳遞在ZnO基板上所造成的電場改變 19
圖2-8 當一功率密度P的聲波穿過單位體積內時所儲存的能量 20
圖2-9 表面聲波傳遞在壓電基板上所產生之電場 26
圖2-10 導電膜在表面聲波元件上的聲電響應之等效電路圖 26
圖2-11 導電膜之片電導與波速及衰減之改變量的關係圖 28
圖2-12 光產生電子—電洞對的形成 30
圖2-13 在一微長度之中的光吸收 31
圖2-14 両個吸收係數的光子強渡對距離的圖形 32
圖3-1 迴旋波示意圖 37
圖3-2 迴旋濺鍍系統 38
圖3-3 迴旋濺鍍系統架構圖 39
圖3-4 濺鍍氮化鋁實驗流程圖 40
圖3-5 不同溫度下氮化鋁薄膜沉積在氮化鎵基板上之XRD圖 42
圖3-6 在300℃下沉積氮化鋁薄膜沉積在氮化鎵基板上之XRD 42
圖3-7 AlN(101)、GaN(101)、Sapphire(104) ψ方向掃描量測圖 43
圖3-8 指叉電極 45
圖3-9 微影蝕刻實驗之流程圖 48
圖3-10 表面聲波元件頻率響應之量測圖 49
圖3-11 雙埠網路訊號流程圖 50
圖3-12 SOLT校正板示意圖 52
圖3-13 振盪電路架構 53
圖3-14 放大器MAN-1LN增益S21量測圖 55
圖4-1 表面聲波振盪器頻譜圖 56
圖4-2 表面聲波振盪器實作成品 57
圖4-3 表面聲波振盪器穩定度測試 57
圖4-4 高強度紫外線燈 59
圖4-5 在UV燈照射下,氮化鎵之光電流與暗電流 60
圖4-6 表面聲波振盪器照射UV燈之頻譜圖 62
圖4-7 在UV燈照射下,振盪器對不同光源強度之頻率飄移 63
圖4-8 振盪器對UV燈光源之反應速率 63
圖4-9 氘鎢鹵素燈之光源強度 65
圖4-10 氘鎢鹵素燈 65
圖4-11 在氘燈照射下,氮化鋁之光電流與暗電流 66
圖4-12 層狀結構表面聲波元件的聲電響應之等效電路圖 68

表目錄
表2.1 不同壓電基板之表面聲波元件對質量負載的靈敏度 24
表3.1 濺鍍氧化鋁之最佳參數表 41
表3.2 指叉電極設計之參數 45
表3.3 放大器MAN-1LN資料表 54
表4.1 Power meter之資料表 58
表4.2 高強度紫外線燈經Power meter量測所得之光源強度 60
表4.3 氘鎢鹵素燈之規格表 64
表4.4 氘燈經Power meter量測所得之光源強度 66
1.J. Camacho, P. V. Santos, F. Alsina, M. Ramsteiner, K. H. Ploog, A. Cantarero, H. Obloh, J. Wagner, “Modulation of the electronic properties of GaN films by surface acoustic waves,” JOURNAL OF APPLIED PHYSICS, vol. 94, Issue 3, pp. 1892-1897, 2003.
2.K.Tsubouchi, K.Sugat, N.Mikoshiba, ”Zero temperature coefficient surface acoustic wave devices using epitaxial AlN films, ” IEEE Ultrasonics Symposium, pp. 340-345,1982.
3.Chang-Woo Nam, Kyu-Chul Lee, “Structural properties and frequency response of AlN thin film surface acoustic wave device,” Science and Technology, vol. 1, pp. 206-204, 2001.
4.Tomabechi.S, Kameda.S, Masu. K, Tsubouchi. K, ”2.4 GHz front-end multi-track AlN/α-Al2O3 SAW matched filter,” IEEE Ultrasonics Symposium, vol. 1 ,pp. 73-76, 1998.
5.Caliendo.C, Saggio.G., Verardi.P, Verona.E “Piezoelectric AlN film for SAW devices applications,” IEEE Ultrasonics Symposium, vol.16, pp. 249-252, 1993.
6.D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M.S. Shur, J.W. Yang, M.A. Khan, ”GaN-based SAW delay-line oscillator”, ELECTRONICS LETTERS, 12th April 2001 Vol. 37 NO. 8.
7.D. Ciplys, R. Rimeika, M.S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, M. Asif Khan, ”Visible-blind photoresponse of GaN-based surface acoustic wave oscillator”, APPLIED PHYSICS LETTERS, 18 MARCH 2002, Vol.80 NO. 11.
8.G. Sauerbrey, Z. Phys., 1959, 155, 206.
9.T.Moriizumi, A.Saitou,T.Nomura, “Multi-channel SAW chemical sensor using 90 MHz SAW resonator and partial casting molecular films” IEEE Ultrasonics Symposium,P499-502,1994.
10.V.Hinrichsen, G. Scholl, M.Schubert, T.Ostertag, “Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave (SAW) temperature sensors” Eleventh International Symposium, P238-241,1999.
11.S.Ballandras, W.Daniau,G. Martin,P.Berthelot, “Wireless temperature sensor using saw resonators for immersed and biological applications” Eleventh International Symposium,P445-448,2002
12.R.S.Falconer, R.Lec,J.F. Vetelino,Z. Xu, “Optimization of a SAW metal oxide semiconductor gas sensor” IEEE Ultrasonics Symposium, P. 585-590,1989.
13.G.Watson, W.Horton, E. Staples, “Gas chromatography utilizing SAW sensors” IEEE Ultrasonics Symposium,P305-309,1991.
14.M.Rapp, H.Gemmeke, J.Reichert, A.Voigt, “Analytical microsystem for organic gas detection based on SAW devices” IEEE Ultrasonics Symposium, P619-622, 1994.
15.E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle, J,-F. Hochedez, “ Assessment of GaN metal-semiconductor- metal photodiodes for high-energy ultraviolet photodetection,” App. Phys. Letters, Vol 80, No. 17 (2002)
16.2. Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi. J. K. Sheu, W. C. Lai and J. M. Tsai, "GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes", IEEE Sensors Journal, Vol. 2, No., 4, pp. 366-371, (2002).
17.EMu˜noz, E Monroy, J L Pau, F Calle, F Omn`es and P Gibart, “III nitrides and UV detection.” J. Phys.: Condens. Matter 13 (2001)
18.EMonroy, F Omn`es and F Calle, ”Wide-bandgap semiconductor ultraviolet,” M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, L. F. Reitz,1992 Appl. Phys. Lett. 60 2917.
19.M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, L. F. Reitz,1992 Appl. Phys. Lett. 60 2917.
20.C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 39, L387 (2000)
21.D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M. Razeghi, Appl.Phys. Lett. 72, 3303 (1998).
22.G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl.Phys .Lett. 75, 247 (1999).
23.M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A.R. Bhattarai, Appl.Phys. Lett. 63, 2455 (1993).
24.Q. Chen, J. W. Yang, A. Oninsky, S. Gangopadhay, B. Lim, M. Z. Anwar, M. A. Kahn, D. Kuksenkov, and H. Temkin, Appl.Phys .Lett. 70, 2277 (1997).
25.E. Monroy, F. Calle, E. Munoz, B. Beaumont, F. Omne`s, and P. Gibart, phys.stat.sol.(a) 176, 141 (1999).
26.Motogaito, M. Yamaguchi, K. Hiramatsu, M. Kotoh, Y. Ohuchi, K. Tadatomo, Y. Hamamura, and K. Fukui, Jpn.J .Appl. Phys. 40, L368 (2001).
27.J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J.Appl. Phys. 83, 6148 (1998).
28.D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, Appl.Phys . Lett. 74, 762 (1999).
29.K. F. Choi, H. J. Kim, S. J. Chung, J. Y. Kim, T. K. Lee, Y. J. Kim, “Experimental and theoretical characterization of the surface acoustic wave propagation properties of GaN epitaxial layers on c-plane sapphire,” JOURNAL OF MATERIALS RESEARCH, vol. 18, Issue 5, pp. 1157-1161, 2003.
30.J. H. Lee, M. B. Lee, S. H. Hahm, Y. H. Lee, J. H. Lee, Y. H. Bae, H. K. Cho, “Growth of semi-insulating GaN layer by controlling size of nucleation sites for SAW device applications,” MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, vol. 8, No. 5, 2003.
31.Hui-Feng Lin, Chun-Te Wu, Wei-Cheng Chien, Sheng-Wen Chen, Hui-Ling Kao, “Investigation of Layered Structure SAW Devices Fabricated Using Low Temperature Grown AlN Thin Film on GaN/Sapphire,” IEEE Tran. Ultrasonics, Ferroelectrics and Frequency Control, Vol. 52, No. 5 p. 923, MAY 2005
32.汪建民, “強介電陶瓷薄膜專題緒論” 工業材料,第107期,P44-48
33.P. Lginbuhl, S. D. Collins, G. A. Racine, M. A. Gretillat, N, F, De Rooij, “Ultrasonic flexural Lamb-Wave actuators based on PZT tjin film” Sensors and Actuators A: Physical, Vol 64 Issue 1 January 1 ,1998, P41-49
34.H. Ieki, M. Kadota, “ZnO thin films for high frequency SAW devices,” Proc. IEEE Ultrasonics Symp., Caesars Tanoe, NV, USA, Vol. 1, pp. 281–289, 1999.
35.H. L. Kao, P.J. Shih, C. H. LAI, “The study of preferred orientation growth of aluminum nitride thin films on ceramic and glass substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 1526–1529, 1999.
36.E. Iborra, M. Clement, J. Sangrador, A. Sanz-Hervas, L. Vergara, M. Aguilar, “Effect of Particle Bombardment on the Orientation and the Residual Stress of Sputtered AlN Films for SAW Devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 51, pp. 352 – 358, Mar., 2004
37.S. Strite and H. Morkoc, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol., vol. B.10, pp. 1297-1267, 1992.
38.Suk-Hun Lee, Hwan-Hee Jeong, Sung-Bum Bae, Hyun-Chul Choi, Jung-Hee Lee, Young-Hyun Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE Trans. Electr. Dev., vol. 48, Issue 3, pp. 524-529, 2001.
39.James H. Edgar and W. J. Meng: “Chapter 1-3 Crystal structure, mechanical properties, thermal properties and refactive index of AlN ”, Properties of Group Ⅲ Nitrides, 1993.
40.Bernard Gil and Fernando A. Ponce: “Chapter 4 Structural Defects and Materials Performance of the Ⅲ-Ⅴ Nitrides”, Group Ⅲ Nitride Semiconductor Compounds Physics and Applications, 1998, P. 124, P. 127, P. 197.
41.C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu and M. Popescu: “Optical, Electrical and structural properties of AlN thin films”, Semiconductor Conference, 1995, P.193-186.
42.C. Caliendo G. Saggio, P. Verardi, E. Verona: “Piezoelectric AlN Film for SAW Devices Application”, IEEE Ultrasonics symposium, 1993, P. 249-252.
43.E. Janczak-Bienk, H. Jensen and G. Sorensen, Mater. Sci. and Eng. A140, 1991 P.696.
44.F.Calle, J.Pedros, T.Palacios, and J.Grajal “Nitride-based surface acoustic wave devices and applications” phys. stat. sol. (c) 2 , No. 3, p.976-983,2005
45.Kuo-Sheng Kao, Ying-Chung Chen, Yi-Hung Lee, “Temperature Coefficients of SAW velocity for AlN thin film sputtered on ST-X Quartz”, 2002 IEEE Ultrasonic Symposium, p.239.
46.K.Uehara, C.M.Yang, H.Nakamura, S.Kameda, H.Nakase and K.Tsubouchi “ AlN Epitaxial Film With Atomically Flat Surface For GHz-Band SAW Devices ” IEEE Ultrasonics Symposium, p.135-138, 2002
47.Hiroshi Okano,Naoki Tanaka,Yusuke Takahashi,Toshiharu Tanaka,Kenichi Shibata,and Shoichi Nakano “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices” Appl.Phys.Lett.64(2),p.166-168,10 January 1994
48.Jianzeng Xu,Hao Ying,Greg Auner “Development of Aluminum Nitride-Based Acoustic Wave Sensors” IEEE,p.1716-1717,2002
49.J. I. Pankove and T. D. Moustakas, Gallium Nitride (GaN) I, San Diego, Academic Press, p.1-10, 1998.
50.B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. Denbaars and J. S. Speck, “Role of treading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. , 68, p.643-645, 1996.
51.T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham,and J. Scanlon, Appl. Phys. Lett. 59 (1991) 944.
52.R. V. Stuart, Vacuum Technology, Thin Films and Sputtering,1983
53.S. Nagahama, T. Yanamoto, M. Sano, T. Mukai, “Characteristics of InGaN laser diodes in the pure blue region,” Applied Physics Letters, vol. 79, Issue 13, pp. 1948-1950, 2001.
54.Y-F. Wu, D. Kapolnet, J. P. Ibbetson, P. Parikh, B. P. Keller, U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” IEEE Electron Dev. Lett., vol. 48, Issue 3, pp. 586-590, 2001.
55.D. -H. Youn, V. Kumar, J. -H. Lee, R. Schwindt, W. -J. Chang, J. -Y. Hong, C. -M. Jeon, S. -B. Bae, K. -S. Lee, J. -L. Lee, J. -H. Lee, I. Adesida, “High power 0.25 /spl mu/m gate GaN HEMTs on sapphire with power density 4.2 W/mm at 10 GHz,” Electron. Lett., vol. 39, Issue 6, pp. 566-567, 2003.
56.Hwan-Hee Jeong, Sun-Ki Kim, Jung-Hee Lee,and Young-Hyun Lee, “Investigation of Dopant Dependent Wave Velocity in GaN Thin Film SAW Filter”, IEEE Ultrasonics symposium 2001, 207-209
57.Sun-Ki Kim, Min-Jung Park, et al, “Investigation of Characteristics of SAW filter using un-doped GaN epitaxial layer grown by MOCVD on Sapphire substrate” 2001 IEEE Ultrasonic Symposium, p.259.
58.Suk-Hun, Lee, Hwan-Hee,Jeong, Sung-Bum, Bae, Hyun-Chul, Choi, Jung-Hee, Lee,Member, IEEE, andYong-Hyun, Lee,Member, IEEE “Epitaxially Grown GaN Thin-Film SAW Filter with High Velocity and Low Insertion Loss ”IEEE Transactions on electron devices ,vol.48 ,No.3 ,p.524-529 ,March 2001.
59.S.Camou, Th.Pastureaud, H.P.D.Schenk, S,Ballandras and V.Laude “Guided elastic waves in GaN-on- sapphire” Electronics Letters,Vol.37 ,No.16, p.1053-1555 , 2nd August 2001.
60.S.J. Martin, A.J. Ricco, T.M. Niemczyk, G.C. Frye, ”Sensors and Actuators”, 20,253-268, 1989.
61.J. Xu, G. Hu, G.W. Auner and H. Ying, “Mass sensitivity of dual mode SAW delay lines on AlN/sapphire structure”, ELECTRONICS LETTERS 27th October 2005 Vol. 41 No. 22.
62.S . J. Martin and A. J. Ricco, “EFFECTIVE UTILIZATION OF ACOUSTIC WAVE SENSOR RESPONSES:SIMJLTANEOUS MEASUREMENT OF VELOCITY AND ATTENUATION”, 1989 ULTRASONICS SYMPOSIUM Proc, IEEE, New York, 621-625, 1989.
63.Yu A. Goldberg, 1999 semicond. Sci. Technol. 14 R14~R60
64.F. Wright, “Elastic properties of Zinc-blende and Wurtzite AlN, GaN, and InN,” J. Appl. Phys., vol. 82, pp. 2833-2839, 1997.
65.R.W. Boswell, Physics Letters, 33A, 457, (1970).
66.M. Sugawara, Plasma Etching Fundamentals and Applications,321, (1998).
67.S.M.Yun, J.H.Kim and H.Y.Chang, IEEE Transactions on PlasmaScience, Vol26, 159, (1998).
68.Y. Mouzouris and J.E. Scharer, IEEE Transactions on PlasmaScience, Vol24, 152, (1996).
69.H. L. Kao, P.J. Shih, C. H. LAI, “The study of preferred orientation growth of aluminum nitride thin films on ceramic and glass substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 1526–1529, 1999.
70.C. H. Wu, W. Y. Chiu, H. L. Kao, “Textured and smooth AlN films prepared by Helicon sputtering system [for SAW device applications],” Electronics Letters, vol. 37, pp. 253 – 255, Feb., 2001.
71.C. K. Campbell, “Chapter 2: Basic of piezoelectricity and acoustic waves”, Surface acoustic wave devices for mobile and wireless communication, 1998.
72.Marten Seth “利用寬頻網路分析儀技術測試CDMA元件” 電子工程專輯,2003.
73.奈米通訊。第七卷第三期19.高頻元件量測技術
74.陳明, 表面聲波傳感器, pp10-50, pp130-150, 西北工業大學, 1997
75.S. Wang, T. Li, J. M. Reifsnider, B. Yang, C. Collins, A. L. Holmes, Jr., and J. C. Campbell, ”Schottky Metal–Semiconductor–Metal Photodetectors on GaN Films Grown on Sapphire by Molecular Beam Epitaxy”, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 11, NOVEMBER 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top