|
[1]Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, 27(2), 219-239. [2]Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985-1032. [3]Ascheuer, N., Fischetti, M., & Grötschel, M. (2001). Solving the asymmetric travelling salesman problem with time windows by branch-and-cut.Mathematical Programming, 90(3), 475-506. [4]Baker, K. R., & Keller, B. (2010). Solving the single-machine sequencing problem using integer programming. Computers & Industrial Engineering, 59(4), 730-735. [5]Baker, K. R., & Magazine, M. J. (2000). Minimizing maximum lateness with job families. European Journal of Operational Research, 127(1), 126-139. [6]Balas, E. (1985). On the facial structure of scheduling polyhedra. InMathematical Programming Essays in Honor of George B. Dantzig Part I (pp. 179-218). Springer Berlin Heidelberg. [7]Ballicu, M., Giua, A., & Seatzu, C. (2002, October). Job-shop scheduling models with set-up times. In Systems, Man and Cybernetics, 2002 IEEE International Conference on (Vol. 5, pp. 6-pp). IEEE. [8]Blazewicz, J., Dror, M., & Weglarz, J. (1991). Mathematical programming formulations for machine scheduling: a survey. European Journal of Operational Research, 51(3), 283-300. [9]Bruno, J., & Sethi, R. (1976, October). Task sequencing in a batch environment with setup times. In Proceedings of the International Workshop organized by the Commision of the European Communities on Modelling and Performance Evaluation of Computer Systems (pp. 81-88). North-Holland Publishing Co.. [10]Choi, I. C., & Choi, D. S. (2002). A local search algorithm for jobshop scheduling problems with alternative operations and sequence-dependent setups. Computers & Industrial Engineering, 42(1), 43-58. [11]Crauwels, H. A. J., Potts, C. N., & Van Wassenhove, L. N. (1997). Local search heuristics for single machine scheduling with batch set-up times to minimize total weighted completion time. Annals of Operations Research, 70, 261-279. [12]Dunstall, S., Wirth, A., & Baker, K. R. (2000). Lower bounds and algorithms for flowtime minimization on a single machine with set-up times. Journal of Scheduling, 3(1), 51-69. [13]Dyer, M. E., & Wolsey, L. A. (1990). Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Applied Mathematics, 26(2), 255-270. [14]Eren, T., & Güner, E. (2006). A bicriteria scheduling with sequence-dependent setup times. Applied Mathematics and Computation, 179(1), 378-385. [15]Keha, A. B., Khowala, K., & Fowler, J. W. (2009). Mixed integer programming formulations for single machine scheduling problems. Computers & Industrial Engineering, 56(1), 357-367. [16]Larsen, J. (1999). Parallelization of the vehicle routing problem with time windows (Doctoral dissertation, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Informatics and Mathematical ModelingInstitut for Informatik og Matematisk Modellering). [17]Maffioli, F., & Sciomachen, A. (1997). A mixed-integer model for solving ordering problems with side constraints. Annals of Operations Research, 69, 277-297. [18]Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219-223. [19]Monma, C. L., & Potts, C. N. (1989). On the complexity of scheduling with batch setup times. Operations Research, 37(5), 798-804. [20]Nemhauser, G. L., & Savelsbergh, M. W. (1992). A cutting plane algorithm for the single machine scheduling problem with release times. In Combinatorial Optimization (pp. 63-83). Springer Berlin Heidelberg. [21]Nogueira, T. H., de Carvalho, C. R. V., & Ravetti, M. G. (2014). Analysis of mixed integer programming formulations for single machine scheduling problems with sequence dependent setup times and release dates.Optimization Online. [22]Parsamanesh, A. H., & Sahraeian, R. (2015). Solving Single Machine Sequencing to Minimize Maximum Lateness Problem Using Mixed Integer Programming. Journal of Quality Engineering and Production Optimization,1(1), 33-42. [23]Potts, C. N. (1980). An algorithm for the single machine sequencing problem with precedence constraints. In Combinatorial Optimization II (pp. 78-87). Springer Berlin Heidelberg. [24]Queyranne, M. (1993). Structure of a simple scheduling olyhedron.Mathematical Programming, 58(1-3), 263-285. [25]Ríos-Mercado, R. Z., & Bard, J. F. (2003). The flow shop scheduling polyhedron with setup times. Journal of Combinatorial Optimization, 7(3), 291-318. [26]Rocha, P. L., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2008). Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times. Computers & Operations Research, 35(4), 1250-1264. [27]Schutten, J. M. J., Van de Velde, S. L., & Zijm, W. H. M. (1996). Single-machine scheduling with release dates, due dates and family setup times.Management Science, 42(8), 1165-1174. [28]Sousa, J. P., & Wolsey, L. A. (1992). A time indexed formulation of non-preemptive single machine scheduling problems. Mathematical programming, 54(1-3), 353-367. [29]Van Eijl, C. A. (1995). A polyhedral approach to the delivery man problem. Department of Math. and Computing Science, University of Technology. [30]Wagner, H. M. (1959). An integer linear‐programming model for machine scheduling. Naval Research Logistics Quarterly, 6(2), 131-140. [31]Webster, S., & Baker, K. R. (1995). Scheduling groups of jobs on a single machine. Operations Research, 43(4), 692-703. [32]Williams, D., & Wirth, A. (1996). A new heuristic for a single machine scheduling problem with set-up times. Journal of the Operational Research Society, 47(1), 175-180. [33]Zhu, Z., & Heady, R. B. (2000). Minimizing the sum of earliness/tardiness in multi-machine scheduling: a mixed integer programming approach. Computers & Industrial Engineering, 38(2), 297-305.
|