跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 12:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈傑
論文名稱:矽質微型壓阻式壓力感測器之熱遲滯現象研究
論文名稱(外文):Investigation of thermal hysteresis phenomenon of Si-based piezo-resistive pressure sensor
指導教授:江國寧
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:矽質壓力感測器熱遲滯現象殘餘應力材料非線性
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,矽質壓力感測器的發展日趨成熟,並應用於許多先進系統中。然而,在現今應用端強調微小化和高精密度的需求下,其各項重要性質的研究更是刻不容緩。因此,為了更精確的量測,和避免感測器對溫度極為敏感而產生的熱遲滯現象,本研究將使用模擬與實驗的方式,觀測由溫度負載所造成熱遲滯電壓的因素,並進行分析與討論。
矽質壓阻式壓力感測器主要是利用微機電製程技術製作而成。其工作原理為藉由施加壓力導致薄膜產生形變;再由壓阻效應原理使得壓阻元件的形變產生電阻值變化,並搭配惠司同電橋電路轉換成電壓變化,以電壓變化反推求得所施加之壓力。然而,壓阻式壓力感測器對外界溫度的敏感度極高,這份特性可能使其準確度降低。當壓阻式壓力感測器受溫度循環負載於導線層產生殘餘應力時,將產生同一溫度於不同受力週期點所量測之輸出電壓漂移,此即稱為熱遲滯現象,而電壓漂移之差值則稱為熱遲滯電壓。為了能減少熱遲滯現象對於壓力感測器的誤差影響,分析鋁導線殘餘應力與熱遲滯電壓的關係成了本研究之主要目標之一。
熱遲滯現象主要是由於在溫度負載下,材料之熱膨脹係數的不匹配和鋁導線的非線性性質交互作用所產生的殘餘應力導致。故本研究將由溫度循環負載中,導入鋁導線的材料非線性性質參數;並以壓力感測器之製程為基礎,以有限單元法模擬壓阻式壓力感測器的熱遲滯現象,並與實驗比對以驗證模擬的可靠度。進而針對修改製程模擬的方式導入蝕刻過程,探討感測器產生熱遲滯電壓的變化情形。此外,本文亦針對潛變效應對壓力感測器熱遲滯電壓的影響,進行一系列的模擬分析與實驗探討。
最後,利用以上熱遲滯現象於壓阻式壓力感測器之影響進行實驗及模擬的分析討論,期望能由研究中所得之結論對日後設計人員有所助益。
Silicon piezoresistive pressure sensor technology has recently been gaining ground in its use in many advanced applications. In order to meet the needs of mechanical signal sensing in the industry, the different characteristics of pressure sensors need to be crucially taken into account. Therefore, our research employs simulations and experiments to determine the factors which produce the thermal hysteresis voltage in thermal cycle loadings. The purpose of this is to achieve measurement accuracy and avoid the thermal hysteresis phenomenon.
The silicon piezoresistive pressure sensor is fabricated by the MEMS process, and utilizes the ion implant technique to form the piezoresistors on the silicon substrate. The main principle for operation is that the external pressure loading causes the deflection on the silicon membrane. Then a piezoresistive effect results in a resistance change in the piezoresistor on the silicon membrane. Using the Wheatstone Bridge transforms the mechanical signal to an output voltage in order to obtain the unknown pressure loading. However, the sensitivity of the piezoresistive pressure sensor is relatively high for the environmental temperature, thereby reducing accuracy. Therefore, the drifts of the output voltage in the same temperature result in a residual stress on the aluminum trace under thermal cycle loading. This situation is called the thermal hysteretic phenomenon, and the variation in output voltage is called the thermal hysteresis voltage. Given these, one goal of the current research is to analyze the relation between the residue stress of the trace and the thermal hysteresis voltage in order to reduce the measurement error in the thermal hysteresis phenomenon.
The thermal hysteresis phenomenon is produced by the thermal expansion coefficients’ mismatch with the nonlinear properties of the aluminum trace in the thermal cycle loadings. Furthermore, this research will input the nonlinear properties of aluminum trace in ANSYS® and will base on the process of the pressure sensor to obtain the thermal hysteresis voltage. After several numerical analyses of the thermal hysteresis voltage, experiments will be performed to validate the simulation results. We will revise the process simulation for the etching effect in order to analyze the thermal hysteresis voltage’s differences. The research will also do a series of simulations and experiments on the creep effect that usually affects the thermal hysteresis voltage in the pressure sensor.
To sum up, both the simulations and experiments systematically discuss the hysteresis phenomenon of the pressure sensor. The study’s conclusions will hopefully provide designers with relevant guidelines in the relative field.
摘要
目錄
表目錄
圖目錄
第一章 緒論
1.1 研究背景
1.2 研究動機
1.3 文獻回顧
1.4 研究目標
第二章 基礎理論
2.1 壓力感測器分類
2.1.1 壓阻式壓力感測器
2.1.2 電容式壓力感測器
2.1.3 壓電式壓力感測器
2.1.4 共振式壓力感測器
2.2 壓阻式壓力感測器原理
2.2.1 壓阻效應
2.2.2 矽的壓阻係數
2.2.3 惠司同電橋
2.2.4 熱補償原理
2.3 遲滯現象
2.3.1 熱遲滯現象之分析理論
2.3.2 熱遲滯電壓之計算
2.4 潛變基礎理論
2.4.1 潛變現象
2.4.2 潛變曲線
第三章 有限單元法分析
3.1 壓力感測器FEM模型
3.2 有限單元法設定
3.2.1 材料參數設定
3.2.2 隱性潛變分析理論及設定
3.2.3 分析條件與步驟
3.2.4 邊界條件設定
3.3 熱遲滯現象模擬之分析方法
第四章 結果分析與討論
4.1 壓力感測器之製程模擬
4.1.1 蝕刻效應之模擬過程
4.1.2 蝕刻效應模擬結果之分析與討論
4.2 熱遲滯電壓
4.2.1 熱遲滯電壓模擬與討論(-40℃~25℃~125℃)
4.2.2 熱遲滯電壓模擬結果(25℃~125℃~25℃)
4.3 潛變效應
4.3.1 實驗流程和儀器架設
4.3.2 實驗結果討論
4.3.3 模擬結果與實驗驗證
4.3.4 模擬結果討論
4.3.5 結果與討論
第五章 結論
第六章 未來展望
第七章 參考文獻
附錄
【1】 X. Wang, Z. Wu, and S. Liu, “Modeling and Simulation of Thermal-mechanical Characteristics of the Packaging of Tire Pressure Monitoring System (TPMS),” IEEE 6th Electronic Packaging Technology, Shenzhen China, pp.693-695, 2005.
【2】 C. S. Smith, “Piezoresistance Effect in Germanium and Silicon,” Physical Review, Vol. 94, pp.42-49, 1954.
【3】 W. G. Pfann and R. N. Thurston, “Semi-conducting Stress Transducers Utilizing the Transverse and Shear Piezoresistance Effects,” Journal of Applied Physics, Vol. 32, pp.2008-2018, 1961.
【4】 N. Tufte and P. W. Chapman, “Silicon diffused element piezoresistive diaphragms,” Journal of Applied Physics, Vol.33, pp.3322-3327, 1962.
【5】 Y. Kanda, “A graphical representation of the piezoresistiance coefficient in silicon,” IEEE Transactions on Electron Devices, Vol. ED-29, pp.64-70, 1982.
【6】 Y. Kanda, “Optimum Design Considerations for Silicon Piezoresistive Pressure Sensor,” Sensor and Actuators, Vol. A62, pp.539-542, 1997
【7】 P. J. French and A. G. R. Evans, “Piezoresistance in Polysilicon and Its Applications to Strain Gauges,” Solid-State Electronics, Vol. 32, pp.1-10, 1989.

【8】 R. C. Jaeger, J. C. Suhling, M. T. Carey, and R. W. Johnson, “A Piezoresistive Sensor Chip for Measurement of Stress in Electronic Packaging,” IEEE Electronic Components and Technology Conference, Orlando USA, pp.686-692, 1993.
【9】 R. C. Jaeger, J. C. Suhling, A. T. Bradley, and J. Xu, “Silicon Piezoresistive Stress Sensors Using MOS and Bipolar Transistors,” Advances in Electronic Packaging-ASME, EEP-26-1, pp.219-225, 1999
【10】 T. Pancewicz, R. Jachowicz, Z. Gniazdowski, Z. Azgin, and P. Kowalski, “The Empirical Verification of the FEM Model of Semiconductor Pressure Sensor,” Sensor and Actuators, Vol. A76, No. 1-3, pp.260-265, 1999.
【11】 E. Abbaspour and S. Afrang, “A Novel Method for Packaging of Micro-machined Piezoresistive Pressure Sensor,” ACM/IEEE International Conference on Software Engineering, Penang Malaysia, pp.141-144, 2002.
【12】 C. C. Lee, C. T. Peng, and K. N. Chiang, “Packaging Effect Investigation of CMOS Compatible Pressure Sensor Using Flip Chip and Flex Circuit Board Technologies,” Sensors and Actuators, Vol. A126, pp.48-55, 2006.
【13】 C. T. Peng and K. N. Chiang, “Analysis and Validation of Thermal and Packaging Effects of a Piezoresistive Pressure Sensor,” Journal of the Chinese Institute of Engineers, Vol. 27, No. 7, pp.955-964, 2004.


【14】 C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and Package Effect of a Novel Piezoresistive Pressure Sensor Fabricated by Front-Side Etching Technology,” Sensors and Actuators, Vol. A119, pp.28-37, 2005.
【15】 L. Lin, H. C. Chu, and Y. W. Lu, “A simulation program for the sensitivity and linearity of piezoresistive pressure sensors,” Journal of Micro-Electro-Mechanical Systems, Vol. 8 , No. 4, pp.514-522, 1999.
【16】 J. E. Vandemeer, G. Li, and A. C. Mcneil, “Analysis of thermal hysteresis on micro-machined accelerometers,” IEEE Sensors 2003, pp.1235-1238, 2003.
【17】 J. A. Chiou and S. Chen, “Thermal Hysteresis Analysis of MEMS Pressure Sensors,” Journal of Micro-Electro-Mechanical Systems, Vol. 14, pp.782-787, 2005.
【18】 Q. Wang and W. H. Ko, “Modeling of touch mode capacitive sensors and diaphragms,” Sensors and Actuators, Vol. A75, pp.230-241, 1999.
【19】 Y. S. Lee and K. D. Wise, “A batch-fabricated silicon capacitive pressure sensor transducer with low temperature sensitivity,” IEEE Transactions on Electron Devices, Vol. 29, pp.42-48, 1982.
【20】 W. H. Ko and Q. Wang, “Touch mode capacitive pressure sensors,” Sensor and Actuators, Vol. 75, pp.242-251, 1999.
【21】 G. Blasquez, C. Douziech, and P. Pons, “Analysis characterization and optimization of temperature coefficient parameters in capacitive pressure sensors,” Sensor and Actuators, Vol. A93, pp.44-47, 2001.
【22】 H. Eldin and A. Elgamel, “A simple and efficient technique for the simulation of capacitive pressure transducers,” Sensor and Actuators, Vol. A77, pp.183-186, 1999.
【23】 L. K. Baxter, “Capacitive Sensors, Design and Applications,” IEEE Press Series on Electronics Technology, New York, 1997.
【24】 S. M. Sze, “Semiconductor Sensors,” John Willey & Sons, pp.160-189, 1994.
【25】 B. N. Lee and K. N. Kim, “Calibration and temperature compensation of silicon pressure sensors using ion-implanted trimming resistors,” Sensors and Actuators, Vol. A72, pp.148-152, 1999.
【26】 Y. T. Lee and H. D. Seo, “Compensation method of offset and its temperature drift in silicon piezoresistive pressure sensor using double wheatstone-bridge configuration,” The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm Sweden, pp.570-573, 1995.
【27】 W. D. Nix, “Mechanical properties of thin films,” Metallurgical transactions, Vol. A20, pp.2217-2245, 1989.
【28】 J. G. Kaufman, “Properties of aluminum alloys,” pp.11, 1999.
【29】 Kent R. Van Horn, “ALUMINUM,” Metals Park, Ohio, pp.6-7, 1967.
【30】 J. C. Greenwood and D. W. Satchel, “Miniature silicon resonant pressure sensor,” IEEE Proceedings, Vol. 135, pp.369-372, 1988.
【31】 J. Daniel Whittenberger, “Creep Stress-Rupture and Stress Relaxation testing,” Metals Handbook, Vol.8, Mechanical Testing, ASM, 1985.
【32】 J. Hult, “Creep in Engineering Structures,” 1966.
【33】 S. Deplanque, W. Nuchter, and B. Wunderle, “Evaluation of the Primary and Secondary Creep of SnPb solder joint using a modified grooved-lap test specimen,” EuroSIME2004 International Conference, Brussels Belgium, pp.351-357, 2004.
【34】 R. K. Penny, “Design for Creep,” pp.148-149, pp.8-12, McGraw-Hill, New York, 1971.
【35】 H. Mavoori, J. Chin, S. Vaynman, and B. Moran, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zu Eutectic Solders,” Journal of Electronic Materials, Vol.26, No.7, 1997.
【36】 C. W. Fan, “Growth Mechanism of Inter-metallic Compound and Creep Behavior of Lead-free/Lead-containing Solder Joints,” National Tsing Hua University Power Mechanical Master Thesis, 2004.
【37】 Keisuke Ishikawa, “Mechanical modeling and micro-structural observation of pure aluminum crept under constant stress,” Materials science & Engineering, Vol. A322, pp.153-158, 2002.
【38】 T. Belytschko, W. K. Liu, and B. Moran, “Nonlinear finite elements for continua and structure,” John Wiley&Sons, NY, 2000.
【39】 K. Bathe, “Finite element procedures,” Prentice-Hall Inc, NY, 1996.
【40】 S. N. Jiang, “Investigation of hysteresis phenomenon of Si-based piezoresistive pressure sensor,” National Tsing Hua University Power Mechanical Master Thesis, 2006.
【41】 N. Q. Chinh and T. G. Langdon, “Using the stress-strain relationships to propose regions of low and high temperature plastic deformation in aluminum,” Materials science & Engineering, pp.234-238, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top