跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡吉齡
研究生(外文):Chi-Lin Tsai
論文名稱:醱酵蔬菜中乳酸菌的分離鑑定及其當作益生菌之分析
論文名稱(外文):Isolation and identification of lactic acid bacteria from fermented vegetables and analysis for use as probiotics
指導教授:顏聰榮顏聰榮引用關係
指導教授(外文):Tsong-Rong Yan
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:乳酸菌耐酸性耐膽鹽性異麥芽寡糖龍膽寡糖益生菌
外文關鍵詞:Lactic acid bacteriaacid tolerancebile salts toleranceisomaltooligosaccharidesgentiooligosaccharidesprobiotic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:577
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
乳酸菌 (Lactic acid bacteria, LAB)被廣泛地使用在製造各類乳製品,是動植物正常菌群之一,亦是probiotics之一,且被歸類為安全食用菌(GRAS)。傳統植物性醱酵製品分離之乳酸菌與乳酪、醱酵乳及肉品醱酵製品中的乳酸菌有所差異,而乳酸菌在乳製品及醱酵工業的經濟效益甚大,故篩選具probiotic特性或具特殊功能的乳酸菌有其必要性。本研究探討不同種類的台灣本土性醱酵蔬菜之含菌量及菌種鑑定。經隨機採集7件市售醱酵蔬菜(泡菜5件、酸筍1件及酸菜1件),以含有CaCO3之GYP培養基進行乳酸菌檢測,結果泡菜中含乳酸菌量大於酸菜及酸筍食品,其所含乳酸菌量平均達107 CFU/mL以上。從分離相挑選288個產酸能力強的菌落進行菌種鑑定,結果鑑定出Lactobacillus fermentum、Lactobacillus casei、Lactobacillus acidophilus、Lactococcus plantarum、Lactococcus lactis等乳酸菌菌種。此303個菌落針對耐酸性(pH2-pH3)及耐膽鹽性(0.2%、0.3%及0.4% bile slats),篩選出33株耐受性較佳的乳酸分離菌株。針對此33株菌株進行模擬消化過程分析、腸道吸附能力(adhesion in Caco-2 cell)、抑制腸道細菌、醱酵纖維寡糖能力等特性篩選出6株能忍受消化過程傷害、吸附至腸道細胞、抑制腸道害菌生長及代謝異麥芽寡糖、龍膽寡糖等probiotics特性的乳酸菌分離株。其分別為Lactococcus plantarum strain E38、E46、E51及Lactobacillus casei strain E7、E15、V38。
Most lactic acid bacteria (LAB) are generally recognized as safe (GRAS) for human consumption, and used world wide in fermented dairy. LAB are widely distribution among animals and plants. Some of them are also considered as probiotics. LAB isolated form traditional fermented vegetables are different from that of cheese, yogurt, and fermented meat. Because LAB have large economic benefits in the industrial of fermented food products and milk products, it is important to screen LAB which have probiotics properties or specific functions. The purpose of this study was to survey the lactic acid bacteria flora of some Taiwanase local fermented vegetables and tried to find some LAB as usable probiotics. Total LAB counts of seven randomly sampled fermented vegetables were analyzed. The average of total LAB counts in five brands of chinese pickled vegetables were over 107 CFU/mL, however one brand of acidified vegetables and acidified bamboo shoot were less than that of pickled vegetables. Among the isolated LAB flora, 288 colonies with high acid producing ability were selected for further analysis. Through biochemical and microbial tests, 147 of 288 colonies were identified as Lactobacillus casei, 6 of 288 colonies were identified as Lactobacillus fermentum, 37 of 288 colonies were identified as Lactobacillus acidophilus, 94 of 288 colonies were identified as Lactococcus plantarum, and 4 of 288 colonies were identified as Lactococcus lactis. Through acid tolerance (pH 2.0, pH 3.0) and bile salts tolerance (0.2%、0.3%、0.4% bile salts) assays, 33 of 288 colonies were selected as high acid and bile salt tolerants. Analysis of the 33 colonies with simulated digestive tract analysis, adhere to Caco-2 cell, antimicrobial activity assay, and oligosaccharides digestiable assay, 6 colonies of Lactococcus plantarum strain E38, E46, E51 and Lactobacillus casei strain E7, E15,V38 were found to be could tolerant from digestive system, could adhere to Caco-2 cell, could restrain pathogen bacteria growth,and could digest isomaltooligosaccharides and gentiooligosaccharides.
第一章 前言……………………………………………………………..1
1.1 緒言………………………………………………………………….1
1.2植物和植物材料中的乳酸菌………………………………………...2
1.3 益生菌之定義及特性……………………………………………….6
1.4乳酸菌的定義………………………………………………………...7
1.5 probiotics乳酸菌之篩選研究…………………………………….…8
1.6 Probiotics乳酸菌之醫藥功效……………………………………...11
1.7 Prebiotics定義及特性……………………………………………...15
1.8 Synbiotics的定義…………………………………………………..17
1.9本研究的動機與目的……………………………………………….17
第二章 材料與方法……………………………………………………20
2.1 材料………………………………………………………………...20
2.1.1 醱酵蔬菜來源………………………………………………...….20
2.1.2 化學試劑與酵素………………………………………………....20
2.1.3 套組………………………………………………………………20
2.1.4儀器………………………………………………………………..21
2.2 方法………………………………………………………………...21
2.2.1 醱酵蔬菜食品所含乳酸菌之篩選及鑑定……………………21
2.2.1.1使用菌株與培養基………………………………………...21
2.2.1.2醱酵蔬菜食品所含乳酸菌之篩選……………………...…21
2.2.1.3菌種鑑定方法……………………………………………...22
2.2.1.4 API菌種鑑定……………………………………………...24
2.2.2 Probiotics特性分析…………………………………………...25
2.2.2.1乳酸菌分離株耐酸性分析………………………………..25
2.2.2.2乳酸菌分離株耐膽鹽性分析……………………………..25
2.2.2.3模擬消化程序之處理…………………………………...…26
2.2.2.4 Caco-2細胞株培養………………………………………..27
2.2.2.5乳酸菌分離株吸附性分析………………………………...27
2.2.2.6乳酸菌分離株抑制腸道害菌分析………………………...28
2.2.2.7乳酸菌分離株抑制腸道益菌分析………………………...29
2.2.3 Prebiotics特性分析……………………………………………29
2.2.3.1 Prebiotics-MRS plate之製備…………………………….29
2.2.3.2 Prebiotics-MRS plate之分析…………………………….30
2.2.3.3乳酸菌分離株在含prebiotics物質培養基之生長曲線分析…………………………………………………………..30
2.2.3.4 乳酸菌分離株代謝prebiotics物質之成分分析………...31
第三章 結果……………………………………………………………32
3.1 醱酵蔬菜所含乳酸菌量及菌種之分析…………………………...32
3.1.1乳酸菌含量檢測………………………………………………..32
3.1.2乳酸菌菌種鑑定……………………………………………..…32
3.2乳酸菌分離株probiotics特性分析………………………………...33
3.2.1耐膽鹽性評估…………………………………………………..33
3.2.2耐酸性評估……………………………………………………..33
3.2.3模擬消化過程之評估…………………………………………..34
3.2.4吸附性評估……………………………………………………..35
3.2.5吸附因子分析…………………………………………………..35
3.2.6抑菌性評估……………………………………………………..35
3.3乳酸菌分離株醱酵寡糖特性分析………………………………….37
3.3.1含寡糖之MRS plate分析……………………………………..37
3.3.2乳酸菌分離株在含寡糖之生長曲線分析……………………..37
3.3.3乳酸菌分離株代謝寡糖之成分分析…………………………..38
3.4 特異性probiotics乳酸菌之篩選……………………………….....38
第四章 討論……………………………………………………………40
4.1醱酵蔬菜所含乳酸菌量及菌種之探討…………………….………40
4.2乳酸菌對消化過程之探討………………………………………….41
4.3乳酸菌吸附能力之探討…………………………………………….43
4.4乳酸菌抑菌性之探討……………………………………………….44
4.5乳酸菌醱酵寡糖能力之探討……………………………….………45
第五章 結論…………………………………………………………....47
參考文獻………………………………………………………………..48
表目錄
表一、人類胃腸道分佈之菌群…………………………………………58
表二、特異性益生菌篩選策略…………………………………………59
表三、醱酵蔬菜來源與乳酸菌含量……………………………………60
表四、API菌種鑑定結果……………………………………………….61
表五、乳酸菌分離株之膽鹽耐受性分析………………………………62
表六、乳酸菌分離株之耐酸性分析……………………………………65
表七、乳酸菌分離株之耐酸性與耐膽鹽性分析………………………67
表八、乳酸菌分離株之吸附性分析……………………………………68
表九、不同處理對於乳酸菌吸附之影響………………………………70
表十、乳酸菌分離株之菌液抑制腸道害菌分析………………………71
表十一、中和後之乳酸菌分離株菌液抑制腸道害菌分析……………73
表十二、乳酸菌分離株菌液抑制腸道益菌分析………………………75
表十三、乳酸菌分離株之醱酵一些寡糖之析………………………....77
圖目錄
圖一、果寡糖之化學結構及反應機制…………………………………79
圖二、異麥芽寡糖之化學結構及反應機制……………………………80
圖三、API system製作流程……………………………………………81
圖四、Caco-2細胞株生長型態…………………………………………82
圖五、不添加乳酸菌之Caco-2細胞株………………………………...83
圖六、Lactobacillus GG附著於Caco-2 細胞株………………………84
圖七、Lactococcus plantarum E51附著於Caco-2細胞株…………...85
圖八、以含有寡糖之MRS plate進行醱酵寡糖特性分析模式圖…….86
圖九、乳酸菌分離株在含寡糖培養基之生長曲線分析………………87
圖十、果寡糖標準品之HPLC管住層析分析結果……………………88
圖十一、異麥芽寡糖標準品之HPLC管住層析分析結果……………89
圖十二、龍膽寡糖標準品之HPLC管住層析分析結果………………90
圖十三、以HPLC分析乳酸菌分離株利用果寡糖結果………………91
圖十四、以HPLC分析乳酸菌分離株利用異麥芽寡糖結果…………92
圖十五、以HPLC分析乳酸菌分離株代謝龍膽寡糖結果……………93
1.Adams, M. R. 1999. Safety of industrial lactic acid bacteria. J. Biotechnol. 68: 171-178.
2.Salminen, S., A von Wright, L. Morelli, P. Marteau, D. Bassart, W. M. de Vos, R. Fonden, M. Saxelin, K. Collins, G. Mogensen, S. E. Birkeland and T. Mattila-Sandholm. 1998. Demonstration of safety of probiotics─a review. Int. J. Food Microbiol. 44:93-106.
3.Aguirre, M. and M. D. Collins. 1993. Lactic acid bacteria and human clinical infection. J. Appl. Bacteriol. 75:95-107.
4.Horn, C. 1999. The potential of probiotics. Food Rev. 11:27-29.
5.Marshall, V. M. 1991. J. Chem.Technol. Biotechnol. 51:548-553.
6.Gardner, N. J., T. Savard, P. Obermeier, G. Caldwell, and C. P. Champagne. 2001. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and omion vegetable mixtures. Int. J. Food Microbiol. 64:261-275.
7.Cai, Y., Y. Benno, M. Ogawa, and S. Kumai. 1999. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J. Dairy Sci. 82:520-526.
8.Fuller, R. J. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378.
9.Huis in’t Veld, J. H. J., R. Havenaar. 1992.〝The lactic acid bacteria〞 TIBTECH J. 12:6-8.
10.O’sullivan, M. G., G. Thornton, G. C. Osullivan, and J. K. Collins. 1992. Probiotic bacteria:myth or reality. Trends in Food and Technology. Dec. 3:309-314.
11.Gorbach, S. L., and B. R. Goldin. 1989. Lactobacillus strains and methods of selection. U. S. Patent 4839281
12.Saxelin, M. 1997. Lactobacillus GG- a human probiotic strain with thorough clinical documentation. Food Rev. Int. 13:293-313.
13. Kalantzopoulos, G. 1997. Fermented products with probiotic qualities. Anaerobe 3:185-190.
14.廖啟成. 1998. Classification and application of lactic acid bacteria. 食品工業. 30:1-10.
15. Johnson, T. R., and C. L. Case. 1995. Laboratory experiments in microbiology. 4nd edition. The Benjamin/Cummings Publoshing Co. Inc.
16.Berrada, N., J. F. Lemeland, G. Laroche, P. Thouvenot, and M. Piaia. 1991. Bifidobacterium from fermented milks: survival during gastric transit. J. Dairy Sci. 74:409-413.
17.Conway, P. L., S. L. Gorbach, and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70:1-12.
18.Thomson, A. B. R. 1978. Intestinal absorption of lipids:influsence of the unstirred water layer and bile acid micelle. In Distrubances in lipid and lipoprotein metabolism. (Dietschy, J. M., A. M. Gotto, and J. A. Ontko, eds), pp.29-55. American Physiological Society. Bethesda, Md.
19.Gilliland, S. E. 1989. Aciophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72:2483-2494.
20. 楊媛絢. 1998. Studies and Patents of Stress-Tolerant Bifidobacteria. 食品工業. 30:32-47.
21.Clark, P. A., and J. H. Martin. 1994. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: III. Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 29:18-21.
22.Klaver, F. A. M., and R. vander Meer. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59:1120-1124.
23.Chateau, N., A. M. Deschamps, and A. HadjSassi. 1994. Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Lett Appl. Microbiol. 18:42-44.
24.Walker, D. K., and S. E. Gililand. 1993. Relationships among bile tolerance, bile salt deconjugation and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci. 76:956-961.
25.Beachey, E. H. 1981. Bacterial adherence:adhesun-receptor interactions mediating the attchment of bacteria to mucosal surfaces. J. Infect. Diseases 143:325-345.
26.Zweibaum, A., M. Laburthe, E. Grasset, and D. Louvard. 1991. Use of cultured cell lines in studies of intestinal cell differentiation and function. In Handbook of Physiology. The Gastrointestinal system IV:223-255.
27.Pinto, M., S. Robine-Leon, M. D. Kedinger, M. Tradou, N. Dussaulx, E. Lacroix, B. Simon-Assmann, P. Haffen, J. Fogh, and A. Zweibaum. 1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biology of the Cell 47:323-330.
28.Firon, N., I. Ofek, and N. Sharon. 1984. Carbohydrate binding sites of the mannose-specific filmbrial lectins of enterobacteria. Infect. Immun. 43:1088-1090.
29.Adlerberth, I., S. Ahrne, M. L. Johansson, G. Molin, L. A. Hanson, A. E. Wold. 1996. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl. Environ. Microbiol. 62:2244-2251.
30.Schiffrin, E. J., D. Brassart, A. L. Servin, F. Rochat, and A. D. Hughes. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria:citeria for strain selection. Am. J. Clin. Nutr. 66:515-520.
31.van Loosdrecht, M. C. M., J. Lyklema, W. Norde, G. Schraa, and A. J. B. Zehnder. 1987. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol. 53:1893-1897.
32.Stewart-Tull, D. E. S. 1980. The immunological activities of bacterial peptidoglycans. Ann. Rev. J. Microbiol. 34:311-340.
33.Granato, D., F. Perotti, I. Masserey, M. Rouvet, M. Golliard, A. Servin, and D. Brassart. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65:1071-1077.
34.Greene, J. D., and T. R. Klaenhammer. 1994. Factors involved in adherence of Lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60:4487-4494.
35..Kociubinski, G., P. Perez, M. Anon, and G. De Antoni. 1996. Amethod of screening of highly inhibitory lactic acid bacteria. J. Food Prot. 59:1-8.
36.Linggren, S. E., W. J. Dobrogosz. 1990. Antagonistic activities of lactic acid bacteria in food and feed dermentations. FEMS Microbiol. Rev. 87:149-163.
37.Eklund, T. 1984. The effect of carbon dioxide on bacterial growth and on uptake processes in the bacterial membrane vesicles. Intern. J. Food Microbiol. 1:179-185.
38.Motlagh, A. M., M. C. Johnson, and B. Ray. 1991. Viability loss of foodborne pathogens by starter culture metabolites. J. Food Protect. 873-878.
39.Chung, T. C., L. T. Axelsson, S. E. Lindgren, and W. J. Dobrogosz. 1989. In vitro studies on reuterin systhesis by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2:137-144.
40.Bruno, M. E. C., and T. J. Montville. 1993. Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59:3003-3010.
41.Sutas, Y., M. Hurme, and E. Isolauri. 1996. Differential regulation of cytokine production by bovine caseins: evidence for generation of tolerogens from allergens by intestinal bacteria. Scandinavian J. Immunol. 43:687-689.
42. Klaver, F. A. M. and R. Van Der Meer. 1993. The assumed assimilation of cholesterol by lactobacilli and bifidobacterium bifidum is due to their bile salt deconjugating activity. Appl. Environ. Microbiol. 59:1120-1124.
43.Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1998. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing lactobacillus cultures. Poultry Science. 77(9):1259-1265.
44. Montes, R. G., T. M. Bayless, J. M. Saavedra, J. A. Perman. 1995. Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactose-maldigesting children. J. Dairy Sci. 78:1657-1664.
45.Sanders, M. E., D. C. Walker, K. M. Walker, K. Aoyama, T. R. Klaenhammer. 1996. Performance of commercial cultures in fluid milk applications. J. Dairy Sci. 79:943-955.
46.Akaza, H. 1997. New strategy of bio-chemoprevention on recurrence of superficial bladder cancer a hypothesis of the mechanism of recurrence. Jap J. Cancer Chemother 24:253-256.
47.Matsuzaki, T. 1998. Immunomodulation by treatment with Lactobacillus casei strain Shirota. Int. J. Food Microbiol. 41:133-140.
48.Tomita, K., H. Akaza, K. Nomoto, T. Yokokura, H. Matsushima, Y. Homma, and Y. Aso. 1994. Influence of Lactobacillus casei on rat bladder carcinogenesis. Jap. J. Urol. 85:655-663.
49.Aso, Y., H. Akaza, T. Kotake, T. Tsukamoto, K. Imai, and S. Naito. 1995. Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double blind trial. Eur. Urol. 27:104-109.
50.Shackelford, L. A., D. R. Rao, C. B. Chawan, and S. R. Pulusani. 1983. Effect of feeding fermented milk on the incidence of chemically induced colon tumors in rats. Nutr. Cancer 5:159-164.
51.Reddy, B. S. 1999. Possible mechanisms by which pro- and prebiotics influence colon carcinogenesis and tumor growth. J. Nutr. 129:147s- 182s.
52. Salminen, S., and E. Salminen. 1997. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand. J. Gastroenterol. Suppl. 222:45-8.
53.Sugita, T., and M. Togawa. 1994. Efficacy of Lactobacillus preparation Biolactis powder in children with rotavirus enteritis. Jap. J. Pediatrics 47:2755-2762.
54.Kaila, M., E. Isolauri, E. Soppi, E. Virtanen, S. Laine, and H. Arvilommi. 1992. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatric Res. 32:141-144.
55.Majamaa, H., and E. Isolauri. 1996. Evaluation of the gut mucosal barrier: evidence for increased antigen transfer in children with atopic eczema. J. Allergy Clinical Immun. 97:985-990.
56.Malin, M., H. Suomalainen, M. Saxelin, and E. Isolauri. 1996. Promotion of IgA immune response in patients with Crohn’s diease by oral bacteriotherapy with Lactobacillus GG. Annals Nutr. Met. 40:137-145.
57.Malin, M., P. Verronrn, H. Mykkanen, S. Salminen, and E. Isolauri. 1996. Increased bacterial urease activity in faces in juvenile chronic arthritis: evidence of altered intestinal microflora? British J. Rheumatol. 35:689-694.
58.Malin, M., P. Verronen, H. Korhonen, E. L. Syvaoja, S. salminen, H. Mykkanen, H. Arvilommi, E. Eerola, and E. Isolauri. 1997. Dietary therapy with Lactobactillus GG, bovine colostrums or bovine immune colostrums in patients with juvenile chronic arthritis: evidence of effect on gut defence mechanisms. Inflammopharmacol. 5:219-236.
59.Henriksson, R., L. Franzen, K. Sandstrom, A. Nordin, M. Arevarn, and E. Grahn. 1995. The effects of active addition of bacterial cultures in fermented milk to patients with chronic bowel discomfort following irradiation. Support Care Cancer 3:81-83.
60.Miettinen, M., J. Vuopio-varkila, and K. Varkila. 1996. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. vol. 64:5403-5405.
61.Gill, H. S., K. J. Rutherfurd, J. Prasad, and P. K. Gopal. 2000. Enhancement of natural and acquired immunity of Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Brit . J . Nutr. vol.83:167-176.
62.Chiang, B. L., Y. H. Sheih, L. H. Wang, C. K. Liao, and H. S. Gill. 2000. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019):optimization and definition of cellular immune responses. Euro. J. Clin. Nutr. vol.54:849-855.
63.Gibson, G. R., and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.J. Nutr. 125:1401-1412.
64.Topping, D. L. 1996. Short-chain fatty acids produced by intestinal bacteria. Asia Pacific J. Clin. Nutr. 5:15-19.
65.Duan, K. J., J. S. Chen, and D. C. Sheu. 1994. Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microb. Technol. 16:334-339.
66.Hidaka, H., T. Eida, T. Adachi, and Y. Saitoch. 1987. Industrial production of fructooligosaccharides and it application for human and animals. Nippon Nogeikagaku. Kaishi 61:915-923.
67.Chiba, S., and T. Shimomura. 1979. Transglucosylation of α-glucosidase. J. Jap. Soc. Starch Sci. 2:59-67.
68.Kanno, T. 1990. Some functional properties of so-called isomaltooligo- saccharides and their application to food industry. J. Jap. Soc. Starch Sci. 37:87-97.
69.Ziemer, C. J., and G. R. Gibson. 1998. An overview of prebiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. Int. Dairy J. 8:473-479.
70.楊媛絢, 廖啟成. 2001. 乳酸菌在保健生產品上之應用與發展趨勢. 醱酵食品之現況與未來發展研討會 68-87.
71.Klaenhammer, T. R., and M. J. Kullen. 1999. Selection and design of probiotics. Int. J. Food microbial. 50:45-57.
72.蔡英傑. 1998. 乳酸菌與益生菌. 生物產業 9:23-32.
73.蔡英傑. 1998. 乳酸菌應用綜論. 生物產業 9:50-56.
74.Yan, T. R., S. M. Chang, and C. H. Chen. 2001. Studies on high acid producing lactic acid bacteria flora and analysis of their plasmids in commercial fermented dairy beverage. Taiwanese J. Agri. Chem. Food Sci. 39:284-290.
75.內村 泰, 岡田早苗著, 小崎道雄監修. 1992. 乳酸菌實驗colony分離及鑑定. 朝倉書局.
76. Kleyn, J., M. Bicknell and M. Gilstrap. 1995. Microbiology Experiments: A Health Science Perspective, (IA. Dubuque eds) Wm. C. Brown Publishers.
77.Jacobsen, C. N., V. R. Nielsen, A. E. Hayford, P. L. Moller, K. F. Michaelsen, A. Perrgaard, B. Sandstrom, M. Tvede, and M. Jakobsen. 1999. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. By in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65:4949-4956.
78.Gopal, P. K., J. Prasad, J. Smart, and H. S. Gill. 2001. In Vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Intern. J. Food Microbiol. 67:207-216.
79.Rammelsberg, M., and F. Radler. 1990. Antibacterial polypeptides of Lactobacillus species. J. Appl. Bacteriol. 69:177-184.
80.Kaplan, H., and R. W. Hutkins.2000. Fermentation of fructo- oligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66:2682-2684.
81.Klaver, F. A. M., and R. Van Der Meer. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugating activity. Appl. Environ. Microbiol. 59:1120-1124.
82.Gilliland, S. E., and D. K. Walker. 1990. Factors to consider when selecting a dietary adjunct to produce a hypocholestroleric effect in humans. J. Dairy Sci. 73:905-911.
83. Toit, M., C. M. A. P. Franz, L. M. T. Dicks, U. Schillinger, P. Haberer, B. Warlies, F. Ahrens, and W. H. Holzafel. 1998. Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faces pH and faces moisture content. Int. J. Food Microbiol. 40:93-104.
84.Tanaka, H., K. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82:2530- 2535.
85.Sheu, T. Y., and R. T. Marshall. 1993. Microentrapment of lactobacilli in calcium alginate gels. J. Food Sci. 54:557-561.
86.Greene, J. D., and T. R. Klaenhammer. 1994. Factors involved in adherence of Lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60:4487-4494.
87.Kontula, P., A. von Wright, and T. Mattila-Sandholm. 1998. Oat bran β-gluco- and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. Int. J. Food Microbiol. 45:163-169.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top