跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林思涵
研究生(外文):Lin, Sih-Han
論文名稱:分析南瓜莖、果實、種子粗萃物的降血糖活性
論文名稱(外文):Investigation on the hypoglycemic effects of the crude extracts from the stems, fruits, and seeds of Cucurbita moschata
指導教授:鄭雪玲鄭雪玲引用關係
指導教授(外文):Cheng, Hsueh-Ling
口試委員:高佑靈張誌益
口試委員(外文):Kao, Yu-LinChang, Chi-I
口試日期:2016-01-15
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:47
中文關鍵詞:中國南瓜胰島素增敏劑類胰島素活性分配萃取AMP-activated protein kinase
外文關鍵詞:Cucurbita moschatainsulin sensitizinginsulin-like activitypartitingAMP-activated protein kinase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本實驗室於前期研究中,證實中國南瓜的莖部含有降血糖的成分,但是中國南瓜其他組織的降血糖效果則不清楚。本研究的目的是比較中國南瓜莖、果實、種子三個不同組織的降血糖活性。實驗以Clone 9大鼠肝臟細胞與C2C12小鼠肌肉細胞為模型,分析南瓜莖、果實、種子的粗萃物是否促進正常細胞吸收葡萄糖。結果,三種粗萃物皆沒有明顯促進正常細胞吸收葡萄糖的效果,但是,進一步以粗萃物的分配萃取層進行分析,三種組織的乙酸乙酯萃取層皆可明顯促進正常細胞吸收葡萄糖,顯示三種組織皆含有類胰島素的活性天然物。進一步分析機制,發現三者皆可活化AMP-activated protein kinase (AMPK)及IRS-1的活化有關,顯示該萃取層的類胰島素效果來自兩種不同的分子機制。以TNF-誘導細胞產生胰島素抗性,以三種粗萃物處理,分析其降血糖效果,結果顯示,三種粗萃物具有胰島素增敏劑的效果。本實驗的結果證實,南瓜全株皆具有降血糖活性,包括胰島素類似物與胰島素增敏劑的功能,使用方式可先將莖、果實或種子先以乙醇萃取,再以乙酸乙酯進一步分配萃取,所得產物可用於第一型或第二型糖尿病的管理。
The stem of Cucurbita moschata has been confirmed to contain hypoglycaemic components, but the hypoglycaemic effects of other tissues of the plant are not clear. The purpose of this study is to investigate and compare the hypoglycaemic effects of the stems, the fruits, and the seeds of C. moschata. The rat normal hepatic cell line Clone 9 and the mouse muscle cell line C2C12 were used as models to assay whether the crude extracts of these tissues could promote the glucose consumption of the cells. Consequently, none of the crude extracts showed such an effect in these cells. However, after partitioning by organic solvents, the ethyl acetate (EA) layer of each of the three crude extracts promoted the glucose uptake of the cells, suggesting that the three tissues all contain molecules with insulin-like actities. Further analysis showed that the EA layers of the three tissues all activated AMP- activated protein kinase and increased the tyrosin phosphorylation of IRS-1, suggesting that the insulin-like of the EA layer is mediated by at least two different mechanisms. Subsequently, Clone 9 cells were treated with tumor necrosis factor-alpha (TNF-alpha) to induce insulin resistance, that were treated with the crude extracts of the three tissues. As a result, the crude extracts exhibited insulin sensitizing activites in insulin-resistant cells. Insummary, the stems, fruits, and seeds of C. moschata all contain hypoglycaemic activity, including insulin-like and insulin-sensitizing activities. It is suggested to extract the stems, fruits, or seeds with ethanol, followed by partitioning with acetate, the resulting product can be used manage type 1 and type 2 diabetes.
目錄
中文摘要 1
Abstract 2
誌謝 4
圖目錄 6
第1章 前言 1
1.1 研究背景 1
1.2 研究動機與架構 3
1.3 研究成果的重要性 4
第2章 文獻回顧 5
2.1 胰島素訊號傳遞路徑 5
2.2 胰島素抗性 (Insulin resistance) 7
2.3 AMPK 7
2.4治療糖尿病的藥物 9
2.5以細胞快速篩選降血糖分子的方法 10
第3章 材料與方法 11
3.1 實驗材料 11
3.1.1 南瓜粗萃物 11
3.1.2 哺乳動物細胞株 11
3.1.3 細胞培養基 12
3.1.4 試劑及緩衝溶液 12
3.1.5 蛋白質分子量標記 15
3.1.6抗體 (antibody) 15
3.2 實驗方法 16
3.2.1 細胞培養 16
3.2.2細胞葡萄糖吸收的分析 17
3.2.3 細胞存活率分析 (WST-1 assay) 17
3.2.4西方墨點法分析 (Western blot analysis) 17
3.3實驗數據統計分析 19
第4章 結果 20
4.1 南瓜粗萃物與萃取層的細胞毒性分析 20
4.2分析南瓜粗萃物是否提高細胞的葡萄糖吸收 20
4.3分析南瓜萃取層的活性 21
第5章 討論 33
第6章 結論 37
參考文獻 38
作者簡介 46

Acosta-Patino, J. L., Jimenez-Balderas, E., Juarez-Oropeza, M. A., and Diaz-Zagoya, J. C. (2001). Hypoglycemic action of Cucurbita ficifolia on Type 2 diabetic patients with moderately high blood glucose levels. Journal of Ethnopharmacology 77, 99-101.
Adams, G. G., Imran, S., Wang, S., Mohammad, A., Kok, S., Gray, D. A., Channell, G. A., Morris, G. A., and Harding, S. E. (2011). The hypoglycaemic effect of pumpkins as anti-diabetic and functional medicines. Food Research International 44, 862-7.
Alexander, J. P., and Acott, T. S. (2003). Involvement of the Erk-MAP kinase pathway in TNFalpha regulation of trabecular matrix metalloproteinases and TIMPs. Investigative Ophthalmolog & Visual Science 44, 164-9.
Alonso-Magdalena, P., Quesada, I., and Nadal, A. (2011). Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nature Reviews Endocrinology 7, 346-53.
Alves, D. S., Farr, G. A., Seo-Mayer, P., and Caplan, M. J. (2010). AS160 associates with the Na+, K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression. Molecular Biology of the Cell 21, 4400-8.
An, D., Toyoda, T., Taylor, E. B., Yu, H., Fujii, N., Hirshman, M. F., and Goodyear, L. J. (2010). TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes 59, 1358-65.
Applequist, W. L., Avula, B., Schaneberg, B. T., Wang, Y.-H., and Khan, I. A. (2006). Comparative fatty acid content of seeds of four Cucurbita species grown in a common (shared) garden. Journal of Food Composition and Analysis 19, 606-611.
Asgary, S. (2011). Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L.) on alloxan-induced diabetic rats. African Journal of Pharmacy and Pharmacology 5, 346-53.
Atkinson, L. L., Kozak, R., Kelly, S. E., Onay Besikci, A., Russell, J. C., and Lopaschuk, G. D. (2003). Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. American Journal of Physiology - Endocrinology and Metabolism 284, 923-30.
Baas, A. F., Boudeau, J., Sapkota, G. P., Smit, L., Medema, R., Morrice, N. A., Alessi, D. R., and Clevers, H. C. (2003). Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. The EMBO Journal 22, 3062-72.
Bandyopadhyay, G., Kanoh, Y., Sajan, M. P., Standaert, M. L., and Farese, R. V. (2000). Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-lambda on insulin-stimulated glucose transport in L6 myotubes. Endocrinology 141, 4120-7.
Bergman, M. (2013). Pathophysiology of prediabetes and treatment implications for the prevention of type 2 diabetes mellitus. Endocrine 43, 504-13.
Bevan, P. (2001). Insulin signalling. Journal of Cell Science 114, 1429-1430.
Bharti, S. K., Kumar, A., Sharma, N. K., Prakash, O., Jaiswal, S. K., Krishnan, S., Gupta, A. K., and Kumar, A. (2013). Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. Journal of the Formosan Medical Association 112, 676-90.
Burri, L., Thoresen, G. H., and Berge, R. K. (2010). The Role of PPARalpha Activation in Liver and Muscle. PPAR Research 2010, 1-11.
Caili, F., Haijun, T., Tongyi, C., Yi, L., and Quanhong, L. (2007). Some properties of an acidic protein-bound polysaccharide from the fruit of pumpkin. Food Chemistry 100, 944-7.
Caili, F., Huan, S., and Quanhong, L. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition 61, 73-80.
Chang, C.-I., Chou, C.-H., Liao, M.-H., Chen, T.-M., Cheng, C.-H., Anggriani, R., Tsai, C.-P., Tseng, H.-I., and Cheng, H.-L. (2015). Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. Journal of Functional Foods 13, 214-24.
Chang, C.-I., Hsu, C.-M., Li, T.-S., Huang, S.-D., Lin, C.-C., Yen, C.-H., Chou, C.-H., and Cheng, H.-L. (2014). Constituents of the stem of Cucurbita moschata exhibit antidiabetic activities through multiple mechanisms. Journal of Functional Foods 10, 260-73.
Chang, L., Chiang, S. H., and Saltiel, A. R. (2004). Insulin Signaling and the Regulation of Glucose Transport. Molecular Medicine 10, 65-71.
Cheng, H. L., Huang, H. K., Chang, C. I., Tsai, C. P., and Chou, C. H. (2008). A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. Journal of Agricultural and Food Chemistry 56, 6835-43.
Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G., and Carling, D. (2000). Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochemical Journal 346, 659-69.
Choi, H., Eo, H., Park, K., Jin, M., Park, E. J., Kim, S. H., Park, J. E., and Kim, S. (2007). A water-soluble extract from Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a high fat diet-induced obesity mouse model. Biochemical and Biophysical Research Communications 359, 419-25.
Chopra, I., Li, H. F., Wang, H., and Webster, K. A. (2012). Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 55, 783-94.
Cline, G. W., Petersen, K. F., Krssak, M., Shen, J., Hundal, R. S., Trajanoski, Z., Inzucchi, S., Dresner, A., Rothman, D. L., and Shulman, G. I. (1999). Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. The New England Journal Of Medicine 341, 240-6.
Cnop, M., Foufelle, F., and Velloso, L. A. (2012). Endoplasmic reticulum stress, obesity and diabetes. Trends in Molecular Medicine 18, 59-68.
Dukes, I. D., and Philipson, L. H. (1996). K+ channels: generating excitement in pancreatic beta-cells. Diabetes 45, 845-53.
Eck, M. J., Dhe-Paganon, S., Trüb, T., Nolte, R. T., and Shoelson, S. E. (1996). Structure of the IRS-1 PTB Domain Bound to the Juxtamembrane Region of the Insulin Receptor. Cell 85, 695-705.
Edavalath, M., and Stephens, J. W. (2010). Liraglutide in the treatment of type 2 diabetes mellitus: clinical utility and patient perspectives. Patient Prefer Adherence 4, 61-8.
Gross, B., and Staels, B. (2007). PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Practice & Research Clinical Endocrinology & Metabolism 21, 687-710.
Gual, P., Le Marchand-Brustel, Y., and Tanti, J.-F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87, 99-109.
Hanks, S. K., Quinn, A. M., and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42-52.
Heal, D. J., Gosden, J., and Smith, S. L. (2009). Regulatory challenges for new drugs to treat obesity and comorbid metabolic disorders. British Journal of Clinical Pharmacology 68, 861-74.
Hui, H., Tang, G., and Go, V. L. (2009). Hypoglycemic herbs and their action mechanisms. Chinese Medicine 4, 1-11.
Iseli, T. J., Walter, M., van Denderen, B. J., Katsis, F., Witters, L. A., Kemp, B. E., Michell, B. J., and Stapleton, D. (2005). AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270). The Journal of Biological Chemistry 280, 13395-400.
Jacqueline, M. S., Lee, J., and Pilch, P. F. (1997). Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. The Journal of Biological Chemistry 272, 971-6.
Joseph, B., and Jini, D. (2013). Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease 3, 93-102.
Kapadia, R., Yi, J.-H., and Vemuganti, R. (2008). Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Frontiers in Bioscience 13, 1813-26.
Kemp, B. E. (2004). Bateman domains and adenosine derivatives form a binding contract. The Journal of Clinical Investigation 113, 182-4.
Kramer, D. K., Al-Khalili, L., Guigas, B., Leng, Y., Garcia-Roves, P. M., and Krook, A. (2007). Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. The Journal of Biological Chemistry 282, 19313-20.
Larsen, T. M., Toubro, S., and Astrup, A. (2003). PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? International Journal of Obesity 27, 147-61.
Lawlor, M. A., and Alessi, D. R. (2001). PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? Journal of Cell Science 114, 2903-10.
Le Marchand-Brustel, Y., Gual, P., Gremeaux, T., Gonzalez, T., Barres, R., and Tanti, J. F. (2003). Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochemical Society Transactions 31, 1152-6.
Le Roith, D., and Zick, Y. (2001). Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 24, 588-97.
Lee, C. H., Olson, P., Hevener, A., Mehl, I., Chong, L. W., Olefsky, J. M., Gonzalez, F. J., Ham, J., Kang, H., Peters, J. M., and Evans, R. M. (2006). PPARdelta regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences 103, 3444-9.
Lim, C. T., Kola, B., and Korbonits, M. (2010). AMPK as a mediator of hormonal signalling. Journal of Molecular Endocrinology 44, 87-97.
Lin, W. W. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation 117, 1175-83.
Lin, Y., and Sun, Z. (2010). Current views on type 2 diabetes. Journal of Endocrinology 204, 1-11.
Mardilovich, K., Pankratz, S. L., and Shaw, L. M. (2009). Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 7, 1-14.
Miller, R. A., Chu, Q., Le Lay, J., Scherer, P. E., Ahima, R. S., Kaestner, K. H., Foretz, M., Viollet, B., and Birnbaum, M. J. (2011). Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. The Journal of Clinical Investigation 121, 2518-28.
Moran-Salvador, E., Lopez-Parra, M., Garcia-Alonso, V., Titos, E., Martinez-Clemente, M., Gonzalez-Periz, A., Lopez-Vicario, C., Barak, Y., Arroyo, V., and Claria, J. (2011). Role for PPAR in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. The FASEB Journal 25, 2538-2550.
Mumm, J. B., and Oft, M. (2008). Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 27, 5913-19.
Nelson, M. T., and Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology - Cell Physiology 268, C799-822.
Nerurkar, P. V., Lee, Y. K., Motosue, M., Adeli, K., and Nerurkar, V. R. (2008). Momordica charantia (bitter melon) reduces plasma apolipoprotein B-100 and increases hepatic insulin receptor substrate and phosphoinositide-3 kinase interactions. British Journal of Nutrition 100, 751-9.
Ohshima, K., Mogi, M., Jing, F., Iwanami, J., Tsukuda, K., Min, L. J., Ogimoto, A., Dahlof, B., Steckelings, U. M., Unger, T., Higaki, J., and Horiuchi, M. (2012). Direct angiotensin II type 2 receptor stimulation ameliorates insulin resistance in type 2 diabetes mice with PPARgamma activation. PLOS ONE 7, e48387.
Olefsky, J. M. (2000). Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists. The Journal of Clinical Investigation 106, 467-72.
Palmer, C. N., Hsu, M. H., Griffin, H. J., and Johnson, E. F. (1995). Novel sequence determinants in peroxisome proliferator signaling. The Journal of Biological Chemistry 270, 16114-21.
Quanhong, L., Caili, F., Yukui, R., Guanghui, H., and Tongyi, C. (2005). Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats. Plant Foods for Human Nutrition 60, 13-6.
Raman, A., and Lau, C. (1996). Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 2, 349-62.
Saltiel, A. R., and Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.
Seargent, J. M., Yates, E. A., and Gill, J. H. (2004). GW9662, a potent antagonist of PPARgamma, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARgamma agonist rosiglitazone, independently of PPARgamma activation. British Journal of Pharmacology 143, 933-7.
Serrano-Marco, L., Chacon, M. R., Maymo-Masip, E., Barroso, E., Salvado, L., Wabitsch, M., Garrido-Sanchez, L., Tinahones, F. J., Palomer, X., Vendrell, J., and Vazquez-Carrera, M. (2012). TNF-alpha inhibits PPARbeta/delta activity and SIRT1 expression through NF-kappaB in human adipocytes. Biochimica et Biophysica Acta 1821, 1177-85.
Sethi, J. K., and Hotamisligil, G. S. (1999). The role of TNF alpha in adipocyte metabolism. Seminars in Cell & Developmental Biology 10, 19-29.
Shaw, J. E., Sicree, R. A., and Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87, 4-14.
Shen, S. C., Chang, W. C., and Chang, C. L. (2013). An extract from wax apple (Syzygium samarangense (Blume) Merrill and Perry) effects glycogenesis and glycolysis pathways in tumor necrosis factor-alpha-treated FL83B mouse hepatocytes. Nutrients 5, 455-67.
Skolnik, E. Y., Lee, C. H., Batzer, A., Vicentini, L. M., Zhou, M., Daly, R., Myers, M. J., Jr., Backer, J. M., Ullrich, A., White, M. F., and et al. (1993). The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. The EMBO Journal 12, 1929-36.
Staels, B., and Fruchart, J. C. (2005). Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54, 2460-70.
Stockli, J., Davey, J. R., Hohnen-Behrens, C., Xu, A., James, D. E., and Ramm, G. (2008). Regulation of glucose transporter 4 translocation by the Rab guanosine triphosphatase-activating protein AS160/TBC1D4: role of phosphorylation and membrane association. Molecular Endocrinology 22, 2703-15.
Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y., Ikawa, Y., Kasuga, M., Yazaki, Y., and Aizawa, S. (1994). Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182-6.
Thong, F. S., Bilan, P. J., and Klip, A. (2007). The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes 56, 414-23.
Tilg, H., and Moschen, A. R. (2008). Inflammatory mechanisms in the regulation of insulin resistance. Molecular Medicine 14, 222-31.
Viollet, B. (2011). AMP-activated protein kinase and metabolic control. Handbook of Experimental Pharmacology 27, 303-30.
Viollet, B., Foretz, M., Guigas, B., Horman, S., Dentin, R., Bertrand, L., Hue, L., and Andreelli, F. (2006). Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. The Journal of Physiology 574, 41-53.
Wang, X., Zhou, L., Shao, L., Qian, L., Fu, X., Li, G., Luo, T., Gu, Y., Li, F., Li, J., Zheng, S., and Luo, M. (2007). Troglitazone acutely activates AMP-activated protein kinase and inhibits insulin secretion from beta cells. Life Sciences 81, 160-5.
Williams, A. J., and Bingley, P. J. (2012). Worth the wait: type 1 diabetes prospective birth cohort studies enter adolescence. Diabetologia 55, 1873-6.
Xie, M., Zhang, D., Dyck, J. R., Li, Y., Zhang, H., Morishima, M., Mann, D. L., Taffet, G. E., Baldini, A., Khoury, D. S., and Schneider, M. D. (2006). A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proceedings of the National Academy of Sciences 103, 17378-83.
Yoshinari, O., Sato, H., and Igarashi, K. (2009). Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Bioscience, Biotechnology, and Biochemistry 73, 1033-41.
Zhang, Z., Zhao, M., Li, Q., Zhao, H., Wang, J., and Li, Y. (2009). Acetyl-l-carnitine inhibits TNF-alpha-induced insulin resistance via AMPK pathway in rat skeletal muscle cells. FEBS Letters 583, 470-4.
Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., and Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation 108, 1167-74.
Zhou, Q. L., Jiang, Z. Y., Holik, J., Chawla, A., Hagan, G. N., Leszyk, J., and Czech, M. P. (2008). Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes. Biochemical Journal 411, 647-55.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top