跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏翰
研究生(外文):Po-Han Huang
論文名稱:傳統中草藥之品質管理統計方法
論文名稱(外文):Statistical Quality Control Method for Traditional Chinese Medicine
指導教授:蕭金福蕭金福引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:45
中文關鍵詞:品質控管β-γ容忍區間槽式設計
外文關鍵詞:quality controlβ-γtolerance intervalnested design.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
傳統中草藥目前在世界上許多地方被使用,傳統中草藥生藥材內的活性成分會隨著不同批次間或不同地區間而有所不同,因此,如何控管傳統中草藥的品質已經成為一個重要的課題。
本論文中,我們提出對傳統中草藥做統計品質控管的分法,基本概念是建構出在槽式設計下傳統中草藥材的β-γ容忍區間。若此β-γ容忍區間落在我們事先規定的品質控管範圍之內,則我們可以說這批生藥材通過了我們的品質控管測驗。本論文也有提到估計樣本數的統計方法與一個模擬的例子。
Abstract
Traditional Chinese Medicine (TCM) is now widely used in the world. The active ingredients in raw materials of TCM are different from batch-to-batch or area-to-area. Thus, how to control the quality of TCM has become an important issue.
In this thesis, we propose a statistical quality control (QC) method for TCM materials. The idea is to construct a β-γtolerance interval for TCM materials under a nested design. If the constructedβ-γtolerance interval lying in a prespecified QC limit, then we can claim that the raw materials have passed the QC test. Statistical methods for estimating the sample size and a simulation example are also studied in this thesis.
目 錄
口試委員會審定書………………………………………………………………..… i
誌謝……………………………………………………………………………..……. ii
英文摘要…………………………………………………………………………..… iii
中文摘要………………………………………………………………………….…. iv
第一章 緒論……………………………………………………………….. 1
1.1傳統中草藥品質管理的概念………………………………………………. 2
1.2研究動機……………………………...…………………………………… 2
1.3研究目的…………………………………………………………………... 3
第二章 文獻回顧……………………………………………………….. 4
2.1平衡隨機效應模型之雙尾β-γ容忍區間……………...………………… 4
2.2決定容忍區間樣本數n…………………………………………………….. 5
第三章 研究方法………………………………………………………………….. 9
3.1研究定義及假設……………………………………………………………. 9
3.2雙尾β-γ容忍區間………………………………………...……………… 9
3.3樣本數的決定………………………………………………………………. 11
第四章 例子………………………………………………………………….. 13
4.1雙尾β-γ容忍區間計算…………………….………………………...…… 14
4.2決定樣本數…………………….………….………………………………… 14
第五章 結論與未來研究………………………………………………………....….. 43
參考文獻…………………………………………………………………….….… 44
第六章 參考文獻
台灣中醫藥現況及藥用植物貿易的研究與報告(宋國彰,2002)。

Bowker, A. H. (1946). Computation of Factors for Tolerance Limits on a Normal Distribution When the Sample is Large. Annals of Mathematical Statistics 17, 238-240.

Faulkenberry, G. D. and Daly, J. C. (1970). Sample Size for Tolerance Limits on a Normal Distribution. Technometrics 12, 813-821.

Faulkenberry, G. D. and Weeks, D. L. (1968). Sample Size Determination for Tolerance Limits. Technometrics 10, 343-348.

Fleiss, J. L. (1971). On the Distribution of a Linear Combination of Independent Chi Squares. Journal of the American Statistical Association 66, 142-144.

Graybill, F. A. (1976). Theory and Application of the Linear Model. Duxbury, North Scituate, MA.

Graybill, F. A., Wang, C. M. (1980). Confidence intervals on nonnegative linear combinations of variances. Journal of American Statistical Association 75:869-873.

Harter, H. L. (1964). New Tables of the Incomplete Gamma-Function Ratio and of Percentage Points of the Chi-square and Beta Distribution. U. S. Government Printing Office, Washington, D. C.


Hoffman, D. and Kringle, R. (2005). Two-sided tolerance intervals for balanced and unbalanced random effects models. Journal of Biopharmaceutical Statistics,15:2,283-293.

Liao, C. T. and Iyer, H. K. (2004). A tolerance interval for the normal distribution with several variance components. Stat. Sinica. 14:217-229.

Satterthwaite, F. E.(1946). An Approximate Distribution of Estimates of Variance Components. Biometrics 2, 110-114.

Scheffe’, H. and Tukey. J.W. (1944). A Formula for Sample Sizes for Population Tolerance Limits. Annals of Mathematical Statistics 15, 217.

Tse, S. K., Chang, J. Y., Su, W. L., Chow, S. C., Hsiung, C. and Lu, Qingshu(2006). Statistical Quality Control Process for Traditional Chinese Medicine. Journal of Biopharmaceutical Statistics 16, 861-874.

Wald, A. and Wolfowitze, J. (1946). Tolerance Limits for a Normal Distribution.
Annals of Mathematical Statistics 19, 208-215.

Wilks, S. S.(1941). Determination of Sample Sizes for Setting Tolerance Limits. Annals of Mathematical Statistics 12, 91-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top