|
References 1. Orkin, S.H. and L.I. Zon, Hematopoiesis: an evolving paradigm for stem cell biology. Cell, 2008. 132(4): p. 631-44. 2. Wu , L.X., Jaenisch R, Lodish HF., Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 1995. 83: p. 59-67. 3. Hodges, V.M., et al., Pathophysiology of anemia and erythrocytosis. Crit Rev Oncol Hematol, 2007. 64(2): p. 139-58. 4. Kerenyi, M.A. and S.H. Orkin, Networking erythropoiesis. J Exp Med, 2010. 207(12): p. 2537-41. 5. Dzierzak, E. and S. Philipsen, Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med, 2013. 3(4): p. a011601. 6. Shyu, Y.C., et al., Tight regulation of a timed nuclear import wave of EKLF by PKCtheta and FOE during Pro-E to Baso-E transition. Dev Cell, 2014. 28(4): p. 409-22. 7. BIEKER, I.J.M.J.J., A Novel, Erythroid Cell-Specific Murine Transcription Factor That Binds to the CACCC Element and Is Related to the Kriippel Family of Nuclear Proteins. Mol. Cell. Biol., 1993. 13(5): p. 2776-2786. 8. JJ., B., Isolation, Genomic Structure, and Expression of Human Erythroid Krüppel-Like Factor (EKLF). DNA Cell Biol, 1996. 15: p. 347-352. 9. Perkins, A.C., Sharpe, A. H. & Orkin, S. H., Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. 1995. 375: p. 318-322. 10. F., N.B.M.D.B.A.P.R.G., Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. 1995. 375: p. 316-318. 11. Tewari R, G.N., Wijgerde M, et al, Erythroid Kruppellike factor (EKLF) is active in primitive and definitive erythroid cells and is required for the function of 5'HS3 of the beta-globin locus control region. Embo J, 1998. 17: p. 2334-2341. 12. Wijgerde, M., et al., The role of EKLF in human beta-globin gene competition. Genes & Development, 1996. 10(22): p. 2894-2902. 13. Drissen, R., et al., The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev, 2004. 18(20): p. 2485-90. 14. Shyu, Y.C., et al., Subcellular transport of EKLF and switch-on of murine adult beta maj globin gene transcription. Mol Cell Biol, 2007. 27(6): p. 2309-23. 15. Schoenfelder, S., et al., Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 2010. 42(1): p. 53-61. 16. Bieker JJ, S.C., The erythroid Kruppel-like factor transactivation domain is a critical component for cell-specific inducibility of a beta-globin promoter. Mol Cell Biol, 1995. 15: p. 852-860. 17. Pandya, K., D. Donze, and T.M. Townes, Novel transactivation domain in erythroid Kruppel-like factor (EKLF). J Biol Chem, 2001. 276(11): p. 8239-43. 18. Bieker, J.J., Kruppel-like factors: three fingers in many pies. J Biol Chem, 2001. 276(37): p. 34355-8. 19. Armstrong JA, B.J., Emerson BM., A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissuespecific transcriptional regulation by EKLF in vitro. cell, 1998. 95: p. 93-104. 20. Kadam, S., Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes & Development, 2000. 14(19): p. 2441-2451. 21. Zhang, W., et al., Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex. Mol Cell Biol, 2001. 21(7): p. 2413-22. 22. Chen, X. and J.J. Bieker, Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol, 2004. 24(23): p. 10416-24. 23. Chen, X. and J.J. Bieker, Unanticipated repression function linked to erythroid Kruppel-like factor. Mol Cell Biol, 2001. 21(9): p. 3118-25. 24. Siatecka, M., L. Xue, and J.J. Bieker, Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol Cell Biol, 2007. 27(24): p. 8547-60. 25. Siatecka, M. and J.J. Bieker, The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood, 2011. 118(8): p. 2044-54. 26. Sengupta, T., et al., Acetylation of EKLF is essential for epigenetic modification and transcriptional activation of the beta-globin locus. Mol Cell Biol, 2008. 28(20): p. 6160-70. 27. Bieker, L.O.X.C.J.J., Regulation of Erythroid Kru¨ ppel-like Factor (EKLF) Transcriptional Activity by Phosphorylation of a Protein Kinase Casein Kinase II Site within Its Interaction Domain. J. Biol. Chem., 1998. 273: p. 23019-23025. 28. Brown, R.C., et al., Distinct Domains of Erythroid Kruppel-Like Factor Modulate Chromatin Remodeling and Transactivation at the Endogenous -Globin Gene Promoter. Molecular and Cellular Biology, 2002. 22(1): p. 161-170. 29. Kong, Y., et al., Loss of α-hemoglobin–stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. Journal of Clinical Investigation, 2004. 114(10): p. 1457-1466. 30. Kihm AJ, K.Y., Hong W, et al., An abundant erythroid protein that stabilizes free a-haemoglobin. Nature, 2002. 417(6890): p. 758-763. 31. Azim AC, K.A., Lutchman M, Andrabi S, Peters LL, Chishti AH., cDNA sequence, genomic structure, and expression of the mouse dematin gene (Epb4.9). Mamm Genome., 1990. 10: p. 1026-1029. 32. Khanna, R., et al., Headpiece domain of dematin is required for the stability of the erythrocyte membrane. Proc Natl Acad Sci U S A, 2002. 99(10): p. 6637-42. 33. Drissen, R., et al., The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol, 2005. 25(12): p. 5205-14. 34. Tallack, M.R., et al., A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res, 2010. 20(8): p. 1052-63. 35. Pilon, A.M., et al., Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. Blood, 2011. 118(17): p. e139-48. 36. Denise Hodge, E.C., Janelle Keys, Tina Maguire, Belinda Hartmann, Alasdair McDowall, and S.G. Mitchell Weiss, and Andrew Perkins, A global role for EKLF in definitive and primitive erythropoiesis. Blood, 2006. 107: p. 3359-70. 37. Nilson, D.G., et al., Major erythrocyte membrane protein genes in EKLF-deficient mice. Exp Hematol, 2006. 34(6): p. 705-12. 38. Pilon, A.M., et al., Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2. Mol Cell Biol, 2008. 28(24): p. 7394-401. 39. Tallack, M.R., et al., EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2. J Biol Chem, 2009. 284(31): p. 20966-74. 40. Tallack, M.R., J.R. Keys, and A.C. Perkins, Erythroid Kruppel-like factor regulates the G1 cyclin dependent kinase inhibitor p18INK4c. J Mol Biol, 2007. 369(2): p. 313-21. 41. Tallack, M.R., et al., Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res, 2012. 22(12): p. 2385-98. 42. Bouilloux, F., et al., EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood, 2008. 112(3): p. 576-84. 43. Shyu, Y.C., et al., Chromatin-binding in vivo of the erythroid kruppel-like factor, EKLF, in the murine globin loci. Cell Res, 2006. 16(4): p. 347-55. 44. Hsu, C.T., C. Y. Ting, C. J. Ting, T. Y. Chen, C. P. Lin, J. Whang-Peng, and and J. Hwang., Vaccination against Gonadotropin-releasing Hormone (GnRH) Using Toxin Receptor-binding Domain-conjugated GnRH Repeats. Cancer Res, 2000. 60: p. 3701-05. 45. Mortensen, M., et al., Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci U S A, 2010. 107(2): p. 832-7. 46. Zhang, J., et al., Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood, 2009. 114(1): p. 157-64.
|