跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 14:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳渂愃
研究生(外文):Min-Hsuan Chen
論文名稱:製備g-C3N4/Bi2O2CO3複合光催化劑降解染料之研究
論文名稱(外文):Application of g-C3N4/Bi2O2CO3 layered composite photocatalyst in dye degradation
指導教授:王雅玢游勝傑
指導教授(外文):Ya-Feng WangSheng-Jie You
學位類別:碩士
校院名稱:中原大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:光催化降解g-C3N4/Bi2O2CO3活性黑染料
外文關鍵詞:photocatalysisdegradationg-C3N4/Bi2O2CO3RB5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現在雖TiO2被廣泛的應用,但因為快速的重組及有限的可見光吸收造成低量子效率,並且含量逐漸減少,現今嘗試找尋新的光催化劑能克服這些問題。本研究製備g-C3N4與Bi2O2CO3合成g-C3N4/Bi2O2CO3複合光催化劑,來提升光吸收的效果及減少電子-電洞的重組,進而提升光催化的效率。
本研究以尿素在不同煅燒溫度、方式、時間下製備成g-C3N4,Bi(NO3).5H2O及Na2CO3以複分解方式製備成Bi2O2CO3, 並依重量比例用兩種不同方法合成g-C3N4/Bi2O2CO3光催化劑,在25ppm濃度下之活性黑染料 (RB5)進行吸附及降解測試,找尋最佳的合成材料及比例,並觀察此光催化劑與反應溫度及光強度對光催化之效果,探討不同製備條件及環境條件對光催化劑的影響。
在25ppm RB5的去除測試中,Bi2O2CO3有很好的吸附效果可達64.48%, g-C3N4的吸附效果較低但降解效果優於Bi2O2CO3,總去除率皆可達59.77%。一段式或二段式煅燒兩種方式所製備的g-C3N4晶體差異並不明顯,而二段式煅燒的吸附效果皆優於一段式的煅燒,以總去除量來看,在二段式煅燒的兩小時是有最好的去除效果,可以達到55.33%之去除率、27.66mg/g之去除量。直接複合光催化劑中,二段式煅燒的吸附效果皆優於一段式的煅燒,不論是一段式或二段式煅燒,直接複合的吸附效果皆優於混合合成。C/B-2/2合成比例在1:3時可以達到最好的吸附及降解效果,總去除率為60%。在高溫的環境下,水中溶氧會下降,而會抑制光催化反應中電子-電洞還原氧的能力,而使超氧自由基減少,影響光催化效果。光子越多,單位時間和面積所激發出來的電子也多,電子-電洞也就多,氧化能力也就增強,因此光強度對光催化非常關鍵,強度大於140Lux時,催化反應的效果會有明顯的增加。本研究之複合光催化劑,可有效使用可見光進行染料的脫色而是TiO2無法達到的效果。
Nowadays, although TiO2 is widely used, because of rapid recombination and limited visible light absorption, resulting in low quantum efficiency and decreasing content, it is possible to overcome these problems by trying to find new photocatalysts.
In this study, g-C3N4 / Bi2O2CO3 composite photocatalyst was synthesized by using self-made g-C3N4 and Bi2O2CO3 to enhance the effect of light absorption and reduce the recombination of electron-electric hole. g-C3N4 was prepared by urea at different calcination temperatures, method and time. Bi(NO3) 3.5H2O and Na2CO3 were used to prepare Bi2O2CO3, and the g-C3N4 / Bi2O2CO3 composite photocatalyst was synthesized by two different methods. The adsorption and degradation test of Reactive black dye (RB5) at 25ppm concentration was carried out to find the best synthetic material and ratio, and to investigate the influence of reaction temperature and light intensity.
In the 25ppm RB5 removal test, Bi2O2CO3 has a good adsorption effect of 60%, while the adsorption of g-C3N4 is low but the degradation is better than Bi2O2CO3, the total removal is 60%. The differences is not significant in the g-C3N4 crystals prepared by the one-stage or two-stage calcination, the adsorption effect of the two-stage calcination is better than that of the one-stage calcination. In terms of total removal, the best removal effect was achieved in the two-stage calcination for two hours, and the removal rate of 55.33% and the removal of 27.66 mg / g. In the direct composite (C+B), the adsorption of the two-stage calcination is better than that of the one-stage calcination. The adsorption of the direct composite is better than that of the mixed synthesis(C/B). C/B-2/2 ratio of 1: 3 can achieve the best adsorption and degradation effect, the total removal rate of 60%. In the high temperature, the dissolved oxygen in the water will decline, it will inhibit the photocatalytic reaction of the electron - hole reduction of oxygen capacity, affecting the photocatalytic effect. The more the photon, unit time and area of electrons - holes also increase, and the oxidation capacity will be enhanced, so the light intensity is very critical to photocatalysis, with greater than 140 Lux the intensity, the catalytic reaction will have significant increase. In this study, the composite photocatalyst can effectively use the visible light for the decolorization of the dye, but not for TiO2.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 前言 7
1.1 研究緣起 7
1.2 研究目的與內容 8
1.3 研究架構 9
第二章 文獻回顧 10
2.1 光催化反應 10
2.1.1 光催化機制 12
2.1.2 新型光催化劑 14
2.1.3 半導體特性 16
2.2 類石墨稀結構氮化碳 18
2.2.1 基本特性 18
2.2.2 製備方法 20
2.3 鹼式碳酸鉍 21
2.3.1 基本特性 21
2.3.2 製備方法 22
2.4 染料廢水之特性 23
2.4.1 活性黑染料 24
2.4.2 染料處理 25
第三章 實驗設備與方法 26
3.1 研究架構 26
3.2 材料製備與合成 28
3.2.1 類石墨烯結構氮化碳製備 28
3.2.2 鹼式碳酸鉍製備 29
3.3 染料去除試驗 30
3.4 實驗藥品與設備 31
3.4.1 實驗藥品 31
3.4.2 實驗器材 32
第四章 結果與討論 33
4.1 材料特性分析 33
4.1.1 FTIR分析 34
4.1.2 XRD分析 36
4.1.3 BET分析 37
4.1.4 SEM分析 39
4.1.5 EDS分析 41
4.2 Bi2O2CO3、g-C3N4對RB5之去除 45
4.3 不同合成方式對RB5之去除 48
4.3.1 混合合成C/B 48
4.3.2 直接複合C+B 51
4.4 不同煅燒方式對RB5之去除 54
4.4.1 一段式煅燒 54
4.4.2 二段式煅燒 57
4.5 實驗條件最佳化 60
4.5.1 不同合成比例對RB5去除之影響 60
4.5.2 不同溫度條件下對RB5去除之影響 63
4.5.3 不同光強度條件下對RB5去除之影響 65
4.6 製備成本 68
第五章、結論與建議 69
5.1 結論 69
5.2 建議 70
第六章、參考文獻 71


圖目錄
圖 1 1研究架構流程圖 9
圖 2 1光催化反應和光合作用示意圖 10
圖 2 2光觸媒反應機制 13
圖 2 3不同材料之能帶結構 16
圖 2 4五種氮化碳之結構 18
圖 2 5氮化碳結構式 19
圖 2 6前驅物縮聚成氮化碳之結構變化 20
圖 2 7鹼式碳酸鉍之結構式 21
圖 2 8活性黑之結構式 24
圖 3 1研究架構流程圖 27
圖 4 1 FTIR分析圖譜 35
圖 4 2 XRD 分析圖譜 36
圖 4 3粒徑分布圖 38
圖 4 4 SEM分析圖 40
圖 4 5 BOC之EDS分析 42
圖 4 6 CN2/2之EDS分析 43
圖 4 7 1:3C/B-2/2之EDS分析 44
圖 4 8 BI2O2CO3及G-C3N4對時間與C/C0關係圖 47
圖 4 9 BI2O2CO3及G-C3N4吸附與降解圖 47
圖 4 10混合合成光催化劑對時間與C/C0關係圖 50
圖 4 11混合合成光催化劑吸附與降解圖 50
圖 4 12直接複合光催化劑對時間與C/C0關係圖 53
圖 4 13直接複合光催化劑吸附與降解圖 53
圖 4 14一段式煅燒複合光催化劑對時間與C/C0關係圖 56
圖 4 15一段式煅燒混合合成光催化劑吸附與降解圖 56
圖 4 16二段式煅燒複合光催化劑對時間與C/C0關係圖 59
圖 4 17二段式煅燒混合合成光催化劑吸附與降解圖 59
圖 4 18不同比例C/B-2/2複合光催化劑對時間與C/C0關係圖 62
圖 4 19不同比例C/B-2/2光催化劑吸附與降解圖 62
圖 4 20不同溫度條件下對RB5染料的去除率 64
圖 4 21不同溫度條件下對RB5染料的去除量 64
圖 4 22不同光強度條件下對RB5染料的去除率 66
圖 4 23不同光強度條件下對RB5染料的去除量 67


表目錄
表 2 1鹼式碳酸鉍的基本性質 22
表 4 1特性分析之儀器設備 33
表 4 2各催化劑之BET分析 37
表 4 3 BOC之EDS分析 42
表 4 4 CN2/2之EDS分析 43
表 4 5 1:3C/B-2/2之EDS分析 44
表 4 6碳酸鉍及氮化碳對RB5之去除效率及去除量 46
表 4 7混合合成之複合光催化劑對RB5之去除效率及去除量 49
表 4 8直接複合之複合光催化劑對RB5之去除效率及去除量 52
表 4 9一段式煅燒之複合光催化劑對RB5之去除效率及去除量 55
表 4 10二段式煅燒之複合光催化劑對RB5之去除效率及去除量 58
表 4 11不同合成比之C/B-2/2之光催化劑對RB5之去除效率及去除量 61
表 4 12在不同溫度下對RB5之去除效率及去除量 63
表 4 13在不同光強度下對RB5之去除效率及去除量 66
表 4 14合成10克之1:3 C/B-2/2光催化劑所需成本 68
第六章、參考文獻
Benedict, L. X., Shirley, E. L., & Bohn, R. B. (1998). Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Physical review letters, 80(20), 4514.
.
Cao, S., Low, J., Yu, J., & Jaroniec, M. (2015). Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials, 27(13), 2150-2176.
Chen, C., Lu, C., Chung, Y., & Jan, J. (2007). UV light induced photodegradation of malachite green on TiO 2 nanoparticles. Journal of hazardous materials, 141(3), 520-528.
Chen, L.-C., Tu, Y.-J., Wang, Y.-S., Kan, R.-S., & Huang, C.-M. (2008). Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of photochemistry and photobiology A: Chemistry, 199(2), 170-178.
Daneshvar, N., Khataee, A., Rasoulifard, M., & Pourhassan, M. (2007). Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of hazardous materials, 143(1), 214-219.
Dong, F., Zhao, Z., Sun, Y., Zhang, Y., Yan, S., & Wu, Z. (2015). An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification. Environ Sci Technol, 49(20), 12432-12440. doi: 10.1021/acs.est.5b03758
Dong, G., Zhang, Y., Pan, Q., & Qiu, J. (2014). A fantastic graphitic carbon nitride (gC 3 N 4) material: electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 33-50.
Fang, J., Fan, H., Ma, Y., Wang, Z., & Chang, Q. (2015). Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Applied Surface Science, 332, 47-54.
Fujishima, A. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238, 37-38.
. doi: 10.15541/jim20130633
Gabor, N. M., Zhong, Z., Bosnick, K., Park, J., & McEuen, P. L. (2009). Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 325(5946), 1367-1371.
Jana, S., Purkait, M., & Mohanty, K. (2010). Removal of crystal violet by advanced oxidation and microfiltration. Applied Clay Science, 50(3), 337-341.
Kim, T.-H., Park, C., Yang, J., & Kim, S. (2004). Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of hazardous materials, 112(1), 95-103.
Le-Clech, P., Lee, E.-K., & Chen, V. (2006). Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Research, 40(2), 323-330.
Li, Y., Jin, R., Xing, Y., Li, J., Song, S., Liu, X., . . . Jin, R. (2016). Macroscopic Foam‐Like Holey Ultrathin g‐C3N4 Nanosheets for Drastic Improvement of Visible‐Light Photocatalytic Activity. Advanced Energy Materials, 6(24).
Lin, H.-F., Liao, S.-C., & Hung, S.-W. (2005). The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of photochemistry and photobiology A: Chemistry, 174(1), 82-87.
Mittal, A. (2006). Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of hazardous materials, 133(1), 196-202.
Mozia, S., Morawski, A. W., Toyoda, M., & Tsumura, T. (2009). Effect of process parameters on photodegradation of Acid Yellow 36 in a hybrid photocatalysis–membrane distillation system. Chemical Engineering Journal, 150(1), 152-159.
Nataraj, S., Hosamani, K., & Aminabhavi, T. (2009). Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination, 249(1), 12-17.
O''neil, M., Marohn, J., & McLendon, G. (1990). Dynamics of electron-hole pair recombination in semiconductor clusters. Journal of Physical Chemistry;(USA), 94(10).
Parshetti, G., Kalme, S., Saratale, G., & Govindwar, S. (2006). Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica, 53(4), 492.
Shon, H., Phuntsho, S., & Vigneswaran, S. (2008). Effect of photocatalysis on the membrane hybrid system for wastewater treatment. Desalination, 225(1-3), 235-248.
Szabó, I., Bergantino, E., & Giacometti, G. M. (2005). Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo‐oxidation. EMBO reports, 6(7), 629-634.
Tian, N., Huang, H., Guo, Y., He, Y., & Zhang, Y. (2014). A gC 3 N 4/Bi 2 O 2 CO 3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Applied Surface Science, 322, 249-254.
Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of catalysis, 122(1), 178-192.
Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of environmental management, 93(1), 154-168.
Wang, H., Su, Y., Zhao, H., Yu, H., Chen, S., Zhang, Y., & Quan, X. (2014). Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environ Sci Technol, 48(20), 11984-11990. doi: 10.1021/es503073z
Wang, Q., Zheng, L., Chen, Y., Fan, J., Huang, H., & Su, B. (2015). Synthesis and characterization of novel PPy/Bi2O2CO3 composite with improved photocatalytic activity for degradation of Rhodamine-B. Journal of Alloys and Compounds, 637, 127-132. doi: 10.1016/j.jallcom.2015.02.201
Xiong, M., Chen, L., Yuan, Q., He, J., Luo, S. L., Au, C. T., & Yin, S. F. (2014). Facile fabrication and enhanced photosensitized degradation performance of the g-C3N4-Bi2O2CO3 composite. Dalton Trans, 43(22), 8331-8337. doi: 10.1039/c4dt00486h
Xu, Y., & Schoonen, M. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3-4), 543-556.
Yu, S., Liu, M., Ma, M., Qi, M., Lü, Z., & Gao, C. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. Journal of Membrane Science, 350(1), 83-91.
Zhang, J., Wang, Y., Jin, J., Zhang, J., Lin, Z., Huang, F., & Yu, J. (2013). Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS applied materials & interfaces, 5(20), 10317-10324.
Zheng, Y., Duan, F., Chen, M., & Xie, Y. (2010). Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed. Journal of Molecular Catalysis A: Chemical, 317(1-2), 34-40. doi: 10.1016/j.molcata.2009.10.018
Zhou, Y., Zhao, Z., Wang, F., Cao, K., Doronkin, D. E., Dong, F., & Grunwaldt, J. D. (2016). Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies. J Hazard Mater, 307, 163-172. doi: 10.1016/j.jhazmat.2015.12.072
刘守新, & 刘鸿. (2006). 光催化及光电催化基础与应用: 化学工业出版社材料科学与工程出版中心.
林安秋. (1996). 作物之光合作用: 臺灣商務印書館.
胡瑋臻, & 徐雍鎣. (2015). 半導體奈米異質結構之製備與光催化及類過氧化酶催化之應用.
徐雍鎣. (2012). 石墨烯/半導體奈米異質結構其界面載子動力學研究.
陳鴻烈, & 鄭慧玲. (1993). 以二氧化鈦進行光催化反應去除飲用水水源中有機污染之動力研究.
曾博建. (1993). 光催化反應分解滲出水中有機污染物之可行性研究.
顧洋. (1997). 以紫外線/臭氧程序處理氣相揮發性有機汙染物反應行為之研究 (II).
顧洋. (2005). 以紫外光發光二極體/光觸媒程序處理氣相有機污染物反應行為之研究.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊