|
第六章、參考文獻 Benedict, L. X., Shirley, E. L., & Bohn, R. B. (1998). Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Physical review letters, 80(20), 4514. . Cao, S., Low, J., Yu, J., & Jaroniec, M. (2015). Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials, 27(13), 2150-2176. Chen, C., Lu, C., Chung, Y., & Jan, J. (2007). UV light induced photodegradation of malachite green on TiO 2 nanoparticles. Journal of hazardous materials, 141(3), 520-528. Chen, L.-C., Tu, Y.-J., Wang, Y.-S., Kan, R.-S., & Huang, C.-M. (2008). Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of photochemistry and photobiology A: Chemistry, 199(2), 170-178. Daneshvar, N., Khataee, A., Rasoulifard, M., & Pourhassan, M. (2007). Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of hazardous materials, 143(1), 214-219. Dong, F., Zhao, Z., Sun, Y., Zhang, Y., Yan, S., & Wu, Z. (2015). An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification. Environ Sci Technol, 49(20), 12432-12440. doi: 10.1021/acs.est.5b03758 Dong, G., Zhang, Y., Pan, Q., & Qiu, J. (2014). A fantastic graphitic carbon nitride (gC 3 N 4) material: electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 33-50. Fang, J., Fan, H., Ma, Y., Wang, Z., & Chang, Q. (2015). Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Applied Surface Science, 332, 47-54. Fujishima, A. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238, 37-38. . doi: 10.15541/jim20130633 Gabor, N. M., Zhong, Z., Bosnick, K., Park, J., & McEuen, P. L. (2009). Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 325(5946), 1367-1371. Jana, S., Purkait, M., & Mohanty, K. (2010). Removal of crystal violet by advanced oxidation and microfiltration. Applied Clay Science, 50(3), 337-341. Kim, T.-H., Park, C., Yang, J., & Kim, S. (2004). Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of hazardous materials, 112(1), 95-103. Le-Clech, P., Lee, E.-K., & Chen, V. (2006). Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Research, 40(2), 323-330. Li, Y., Jin, R., Xing, Y., Li, J., Song, S., Liu, X., . . . Jin, R. (2016). Macroscopic Foam‐Like Holey Ultrathin g‐C3N4 Nanosheets for Drastic Improvement of Visible‐Light Photocatalytic Activity. Advanced Energy Materials, 6(24). Lin, H.-F., Liao, S.-C., & Hung, S.-W. (2005). The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of photochemistry and photobiology A: Chemistry, 174(1), 82-87. Mittal, A. (2006). Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of hazardous materials, 133(1), 196-202. Mozia, S., Morawski, A. W., Toyoda, M., & Tsumura, T. (2009). Effect of process parameters on photodegradation of Acid Yellow 36 in a hybrid photocatalysis–membrane distillation system. Chemical Engineering Journal, 150(1), 152-159. Nataraj, S., Hosamani, K., & Aminabhavi, T. (2009). Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination, 249(1), 12-17. O''neil, M., Marohn, J., & McLendon, G. (1990). Dynamics of electron-hole pair recombination in semiconductor clusters. Journal of Physical Chemistry;(USA), 94(10). Parshetti, G., Kalme, S., Saratale, G., & Govindwar, S. (2006). Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica, 53(4), 492. Shon, H., Phuntsho, S., & Vigneswaran, S. (2008). Effect of photocatalysis on the membrane hybrid system for wastewater treatment. Desalination, 225(1-3), 235-248. Szabó, I., Bergantino, E., & Giacometti, G. M. (2005). Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo‐oxidation. EMBO reports, 6(7), 629-634. Tian, N., Huang, H., Guo, Y., He, Y., & Zhang, Y. (2014). A gC 3 N 4/Bi 2 O 2 CO 3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Applied Surface Science, 322, 249-254. Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of catalysis, 122(1), 178-192. Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of environmental management, 93(1), 154-168. Wang, H., Su, Y., Zhao, H., Yu, H., Chen, S., Zhang, Y., & Quan, X. (2014). Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environ Sci Technol, 48(20), 11984-11990. doi: 10.1021/es503073z Wang, Q., Zheng, L., Chen, Y., Fan, J., Huang, H., & Su, B. (2015). Synthesis and characterization of novel PPy/Bi2O2CO3 composite with improved photocatalytic activity for degradation of Rhodamine-B. Journal of Alloys and Compounds, 637, 127-132. doi: 10.1016/j.jallcom.2015.02.201 Xiong, M., Chen, L., Yuan, Q., He, J., Luo, S. L., Au, C. T., & Yin, S. F. (2014). Facile fabrication and enhanced photosensitized degradation performance of the g-C3N4-Bi2O2CO3 composite. Dalton Trans, 43(22), 8331-8337. doi: 10.1039/c4dt00486h Xu, Y., & Schoonen, M. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3-4), 543-556. Yu, S., Liu, M., Ma, M., Qi, M., Lü, Z., & Gao, C. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. Journal of Membrane Science, 350(1), 83-91. Zhang, J., Wang, Y., Jin, J., Zhang, J., Lin, Z., Huang, F., & Yu, J. (2013). Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS applied materials & interfaces, 5(20), 10317-10324. Zheng, Y., Duan, F., Chen, M., & Xie, Y. (2010). Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed. Journal of Molecular Catalysis A: Chemical, 317(1-2), 34-40. doi: 10.1016/j.molcata.2009.10.018 Zhou, Y., Zhao, Z., Wang, F., Cao, K., Doronkin, D. E., Dong, F., & Grunwaldt, J. D. (2016). Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies. J Hazard Mater, 307, 163-172. doi: 10.1016/j.jhazmat.2015.12.072 刘守新, & 刘鸿. (2006). 光催化及光电催化基础与应用: 化学工业出版社材料科学与工程出版中心. 林安秋. (1996). 作物之光合作用: 臺灣商務印書館. 胡瑋臻, & 徐雍鎣. (2015). 半導體奈米異質結構之製備與光催化及類過氧化酶催化之應用. 徐雍鎣. (2012). 石墨烯/半導體奈米異質結構其界面載子動力學研究. 陳鴻烈, & 鄭慧玲. (1993). 以二氧化鈦進行光催化反應去除飲用水水源中有機污染之動力研究. 曾博建. (1993). 光催化反應分解滲出水中有機污染物之可行性研究. 顧洋. (1997). 以紫外線/臭氧程序處理氣相揮發性有機汙染物反應行為之研究 (II). 顧洋. (2005). 以紫外光發光二極體/光觸媒程序處理氣相有機污染物反應行為之研究.
|