跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何駿驊
研究生(外文):Chun-Hua Ho
論文名稱:髖屈曲/伸展高耦合比機構之設計
論文名稱(外文):Design of A Flexion-Extension Coupling Ratio Mechanism for Orthotics and Prosthetics
指導教授:李志中李志中引用關係
口試委員:陳適卿
口試日期:2011-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:99
中文關鍵詞:下肢癱瘓髖離斷截肢交替式步態矯具耦合比例髖關節
外文關鍵詞:paraplegichip-disarticulationgait reciprocating orthosiscoupling ratiohip joint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在臨床上,下肢癱瘓和半骨盆/髖離斷截肢病患在臨床上的治療是最具挑戰性的議題,不論是交替式步態矯具還是加拿大式義肢,相對於膝關節,兩者的髖關節機構皆急需創新設計。交替式步態矯具的髖關節機構為一鉸鏈機構,這種設計造成只提供人體髖關節屈曲/伸展方向的運動,而不提供內翻/外轉(internal/external rotation)以及內收/外展(adduction/abduction)的運動,如此的限制導致穿戴矯具行走時,無法像正常步態一般作出骨盆旋轉的運動,進而產生非必要的補償動作。本研究的目的即針對交替式步態矯具髖關節的耦合比機構進行創新設計,實現可在站立中期自動轉換耦合比的機構。過程中利用Lagrange方程式建立的簡易人體模型,並使用代入不同的肢段初始條件所得參數所顯現的特性,進一步設計出能確實使髖關節達到高耦合比的新機構。予以實體化後,接著用模擬與影像處理方法檢驗理論以及實驗之髖關節耦合比例。結果顯示在合理的擺動範圍內,新機構的耦合比符合預期。透過正常受試者穿上1:1機構的步態實驗結果,我們認為此不正常的拘束很可能是造成病患步行速率與步幅無法有效增加的原因之一。最後我們對原型機構現有的問題提供建議,讓後續設計者研發之機構更加成熟與穩定。

The main purpose of this research is to design a set of hip flexion-extension coupling ratio mechanism for paraplegic and HD/HP patients. In clinical experiences, the treatment for paralysis of lower extremities and HD/HP patients is the most challenging issue. Compared with knee joint mechanism, the hip joint needs novel design in priority. The hip mechanism of reciprocating gait orthosis (RGO) can only apply flexion/extension motion. The limitation leads to patients’ compensatory movement. So the mechanism needs to have the ability to adjust higher flexion-extension coupling ratio(FECR) automatically for different phases. First, we use Lagrange equation to establish simple human model. By substituting different initial conditions, the solution can be used to design higher hip coupling ratio mechanism which is better than conventional mechanism. In practical application, we investigate the real coupling ratio and the influence of 1:1 coupling ratio mechanism on normal people by motion analysis method. We find that the abnormal constrain may be one of the main reason of slow walking speed. Finally, we give suggestions for more mature mechanism which can work stably on subjects in the future.

誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧與探討 4
1.3 研究動機與目的 10
1.4 本文架構 12
第二章 基本步態理論 13
2.1 名詞解釋 13
2.2 基本步態介紹 15
2.2.1 步態週期 15
2.2.2 人體生理(解剖)平面 16
2.2.3 髖關節耦合比 19
2.3 兩大步態理論與耗能研究 21
第三章 質心與Lagrange equation 24
3.1 質心位置之比較 24
3.2 動力學人體模型 26
3.2.1 建模方法 26
3.2.2 初始條件 29
3.2.3 結果 30
3.3 討論 31
第四章 現有機構與新設計 35
4.1 現有機構介紹 35
4.2 新設計 39
4.2.1 雙支點設計 39
4.2.2 滑槽塊設計 42
4.2.3 支點受力分析 43
4.3 元件選用 44
4.3.1 電磁鐵與微動開關 45
4.3.2 扁線壓縮彈簧 47
4.3.3 其他元件 49
4.4 最終設計與機構雛型 52
4.5 討論 55
第五章 動作分析原理與實驗方法 58
5.1 動作分析原理 58
5.1.1 力板資料處理 58
5.1.2 標記點資料處理 60
5.1.3 關節角度與角速度 62
5.1.4 關節受力與力矩 64
5.2 實驗設備與準備程序 67
5.2.1 實驗設備 67
5.2.2 標記點配置 69
5.2.3 建立坐標系 70
5.3 實驗規劃 75
5.3.1 機構耦合比之檢驗 75
5.3.2 步態實驗 75
第六章 結果討論 78
6.1 結果 78
6.2 討論 81
6.2.1 耦合比檢驗 81
6.2.2 步態實驗 81
6.2.3 高耦合比機構之改善 83
第七章 結論與未來研究方向 85
7.1 結論 85
7.2 未來研究方向 85
參考文獻 86
附錄一 零件表 90
附錄二 加工件工程圖 92



[1] Merati G et al., “Paraplegic adaptation to assisted walking: energy expenditure during wheelchair versus orthosis use.” Spinal Cord (2000); 38: 37-44.
[2] R. Waters and B.P. Lundsford, “Energy cost of paraplegic locomotion.” J. Bone Joint Surg. (1985); 67-A: 1245-1250.
[3] Robert L. Waters and Sara Mulroy, “The energy expenditure of normal and pathologic gait.” Gait and Posture (1999); 9: 207-231.
[4] Johnson and WB, “Walking mechanics of persons who use reciprocating gait orthoses.” J. Rehabilitation Research and Development (2009); 46: 435-446.
[5] McAnelly RD, Refaeian M, O’Connell DG, Powell GD and Walsh NE., “Successful prosthetic fitting of a 73-year-old hip disarticulation amputee patient with cardiopulmonary disease.” Arch. Phys. Med. Rehabil. (1998); 79: 585-588.
[6] F. Nowrozzi and M.L. Salvanelli, “Energy expenditure in hip disarticulation and hemipelvectomy amputees.” Arch. Phys. Med. Rehabil. (1983); 64: 300-303.
[7] T. Chin, S. Sawamura, R. Shiba, H. Oyabu, Y. Nagakura and A. Nakagawa, “Energy expenditure during walking in amputees after disarticulation of the hip: a microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.” J. Bone Joint Surg. (2005); 87: 117-119.
[8] A. Fernandez and J. Formigo, “Are Canadian prostheses used? A long-term experience.” Prosthetics and Orthotics International (2005); 29(2): 177-181.
[9] IJzerman and MJ., “The influence of frontal alignment in the advanced reciprocating gait orthosis on energy cost and crutch force requirements during paraplegic gait.” Basic and Applied Myology (1997); 7: 123-130.
[10] Shun-Yi Yao, “Kinematic design of an orthotic joint for paraplegic and diplegic patients.” Master Thesis (2009).
[11] L. Yang, D. N. Condie, M. H. Granat, J. P. Paul, and D. I. Rowley, “Effects of joint motion constraints on the gait of normal subjects and their implications on the further development of hybrid FES orthosis for paraplegic persons.” J. Biomech. (1996); 29(2): 217 - 226.
[12] L. Yang, M.H. Granat, J.P. Paul, D.N. Condie and D.I. Rowley, “Further development of hybrid functional electrical stimulation orthoses.” Spinal Cord (1996); 34: 611-614.
[13] Ting-Wei Chen, “Effects of hip flexionextension coupling ratio on gait.” Master Thesis (2010).
[14] Colin A. McLaurin and BASc., “The evolution of the canadian-type hip-disarticulation prosthesis.” Artificial Limbs (1957); 4(2): 22-28.
[15] Aaron A. Rasmussen, Keith M. smith, CO, LO and Diane L. Damiano, “Biomechanical evaluation of the combination of bilateral stance-control knee-ankle-foot orthoses and a reciprocating gait orthosis in an adult with a spinal cord injury.” Journal of Prosthetics and Orthotics (2007); 19(2): 42-47.
[16] S. E. Solomonidis, A. J. Loughran, J. Taylor and J. P. Paul, “Biomechanics of the hip disarticulation prosthesis.” Prosthetics and Orthotics International (1977); 1: 13-18.
[17] J. B. dec. M. Saunders, Verne T. Inman and Howard D. Eberhart, “The major determinants in normal and pathological gait.” J. Bone Joint Surg. (1953); 35: 543-558.
[18] McGeer, “Dynamics and control of bipedal locomotion.” Journal of Theoretical Biology (1993); 163(3): 277-314.
[19] G. A. Cavagna and R. Margaria, “Mechanics of walking.” Journal of Applied Physiology (1966); 21(1): 271-278.

[20] Arthur D. Kuo, “The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.” Human Movement Science (2007); 26: 617-656.
[21] J. Maxwell Donelan, Rodger Kram and Arthur D. Kuo, “Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking.” Journal of Experimental Biology (2002); 205: 3717-3727.
[22] J. Maxwell Donelan, Rodger Kram and Arthur D. Kuo, “Simultaneous positive and negative external mechanical work in human walking.” Journal of Biomechanics (2002); 35: 117-124.
[23] R.R. Neptune, F.E. Zajac and S.A. Kautz, “Muscle mechanical work requirements during normal walking: the energetic cost of raising the body’s center-of-mass is significant.” Journal of Biomechanics (2004); 37: 817-825.
[24] C. G. Downes, S. L. Hill and J. O. Gray, “Distributed control of an electrically powered hip orthosis.” Control ''94. International Conference (1994); 1: 24-30.
[25] Bashir M. Y. Nouri and Arafat Zaidan, “Computer control of a powered two degree freedom reciprocating gait orthosis.” The Instrumentation, Systems, and Automation Society (2006); 45(2): 249-258.
[26] Y. Ohata, H. Yano, R. Suzuki, M. Yoshida, N. Kawashima and K. Nakazawa, “A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.” Journal of Engineering in Medicine (2007); 221: 629-639.
[27] W. D. Spence, N. K. Fowler, A. C. Nicol and S. J. Murray, “Reciprocating gait prosthesis for the bilateral hip disarticulation amputee.” Proc Instn Mech Engrs (2001); 215: 309-314.
[28] C. S. To, R. Kobetic and R. J. Triolo, “Hybrid orthosis system with a variable hip coupling mechanism.” Proceedings of the 28th IEEE EMBS Annual International Conference (2006): 2928-2931.
[29] G. K. Rose, “The principles and practice of hip guidance articulation.” Prosthetics and Orthotics (1979); 3: 37-43.
[30] David A. Winter, “Biomechanics and motor control of human movement-fourth edition.” JOHN WILEY & SONS, INC., 2005.
[31] “Reciprocating Gait Orthosis-A Pictorial Description and Application Manual.” Fillauer, INC.
[32] Alexandre Pitti, Max Lungarella and Yasuo Kuniyoshi, “Generating spatiotemporal joint torque patterns from dynamical synchronization of distributed pattern generators.” Frontiers in Neurorobotics (2009); 3: Article 2.
[33] Yu-Ting Chen, “A study of the design of auxiliary walking mechanisms for lower limb disablement.” Master Thesis (2006).
[34] Yoon Y.S. and Mansour J.M., “The Passive elastic moment at the hip.” J. Biomech. (1999); 15(12): 905-910.
[35] Mansour J.M. and Audu M.L., “The Passive elastic moment at the knee and its influence on human gait.” J. Biomech. (1986); 19(5): 369-373.
[36] Fujita K. and Sato H., “Intrinsic viscoelasticity of ankle joint during standing.” Proc. Intern. Conf. of the IEEE eng. Med. Biol. Soc. (1998); 20(5): 2343-2345.
[37] XPAL Homepage. Available from : < http://www.energizerpowerpacks.com/us/>
[38] Suh C. H. and Radcliffe. C.W., “Kinematics and Mechanisms Design,” JOHN WILEY & SONS, INC., 1978.
[39] Shiuh-Sheng Shi, “Interface Pressure and Gait Analysis in Different walking Speeds and Prosthetic Feet on the Below-Knee Amputees with a prosthesis.” Master Thesis (2003).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top