跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林伯庭
研究生(外文):Bor-tyng Lin
論文名稱:c-JunN-terminalkinase在血管收縮素二所誘發血管皮滑肌細胞老化的角色
論文名稱(外文):The Role of c-Jun N-terminal Kinase in Angiotensin II-induced Cellular Senescence of Vascular Smooth Muscle Cells
指導教授:江美治江美治引用關係
指導教授(外文):Meei-jyh Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:細胞生物及解剖學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:60
中文關鍵詞:老化血管收縮素二腹主動脈瘤
外文關鍵詞:senescenceJNKAAAAng II
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腹主動脈瘤在年齡高於60歲的族群發生率是百分之8,且當其破裂時會導致很高的死亡率。腹主動脈瘤的特徵主要是在動脈管壁中層的細胞外間質受到破壞及血管平滑肌細胞的缺失。此外有報導指出c-Jun N-terminal Kinase在形成腹主動脈瘤的動物模式中扮演著重要的角色。先前的文獻中提到血管收縮素二會透過p53/p21此路徑導致血管平滑肌細胞的提前老化。所以我們在此假設c-Jun N-terminal kinase的活化仲介了血管平滑肌細胞的老化及缺失在腹主動脈瘤的形成過程中。我們利用血管收縮素二處理人類血管平滑肌細胞二十四小時及四十八小時後,可以誘發血管平滑肌細胞的提前老化藉由偵測在酸鹼值等於6.0的老化相關β-galactosidase活性。我們也在20 周歲Apo E 缺失老鼠的升主動脈基部的動脈硬化處發現有老化的細胞出現,但是在21周的B6老鼠中並沒有偵測到老化的細胞。我們檢測人類腹主動脈瘤檢體的JNK表現與磷酸化的程度,並以冠狀動脈繞道手術時在升主動脈打洞所取得的檢體當作對照組。發現JNK2活化程度在腹主動脈瘤中比冠狀動脈繞道手術時在升主動脈打洞所取得的檢體中有顯著的增加,但JNK2的表現在兩者檢體間並無差異。相反的,JNK1的活化很低且偵測不到其表現量在兩者檢體中。有趣地,在體外培養的人類動脈血管平滑肌細胞的實驗中,血管收縮素二刺激細胞的JNK1活化在五分鐘後達到最大值且在六十分鐘後回到基礎值但是並沒有偵測到JNK2的活化。然而,血管收縮素二處理血管平滑肌細胞直到四十八小時後,JNK1的活化及表現量似乎有隨血管收縮素二刺激時間增長而上升的趨勢但對照主相比並無達到顯著差異。此外並無JNK2活化被偵測到且其表現量也無明顯的改變在長時間血管收縮素二處理下。利用血管收縮素二處理血管平滑肌細胞四十八小時後,p21Cip1 的表現量並無顯著的增加。血管收縮素二刺激平滑肌細胞2分鐘候可以誘發過氧化氫的產生持續到5分鐘,且隨著時間過氧化氫的產生有減少的趨勢,然而過氧化氫在60分鐘刺激時產量再度增加。更進一步發現,將血管平滑肌細胞處理JNK的抑制劑SP600125,可以阻斷因為血管收縮素二所誘發的血管平滑肌細胞老化的現象。這些結果可能可以說明JNK的活化,可能是JNK1活化,參與在血管收縮素二所誘發平滑肌細胞老化。
Abdominal aortic aneurysm (AAA) is present in 8% of the population over 60 years of age and exhibits a high mortality rate when rupture. AAA is characterized by extracellular matrix destruction and depletion of vascular smooth muscle cells (VSMC) in the tunica media. Angiotensin II (Ang II) was shown to induce AAA formation in animal models and c-Jun N-terminal kinase (JNK) was shown to play a critical role. A previous study suggested that Ang II induces premature senescence of VSMCs via a p53/p21-dependent pathway. We hypothesized that JNK activation mediates VSMC senescence and loss during AAA formation. Ang II treatment for 24 or 48 h induced cellular senescence of VSMC assessed by senescence-associated β-galactosidase (SA β-gal) activity. SA β-gal-postive cells were detected in atherosclerotic lesions of the aortic root in 20 weeks-old ApoE-/- mice but not in the aortic root of 21 weeks-old B6 mice. JNK phosphorylation and expression levels were examined in specimens of AAA and punctured ascending aorta from coronary artery bypass graft (CABG) surgery as control. JNK2 phosphorylation levels in AAA specimens were markedly higher than those in CABG specimens. In contrast, JNK1 expression was not detectable in those specimens with low phosphorylation levels. Interestingly, in cultured human aortic SMCs (HASMCs), Ang II stimulated JNK1, but not JNK2, phosphorylation that peaked at 5 min and returned to basal levels at 60 min. Long-term Ang II treatment up to 48 h tended to increase JNK1 phosphorylation and expression but did not reach significant difference. Neither phosphorylation nor changes in expression of JNK2 was detected in HASMCs following long-term Ang II-treatment. Moreover, JNK inhibition by treating SP600125, a selective JNK inhibitor, inhibited Ang II-induced cellular senescence of HASMCs. The expression of p21Cip1 did not increase significantly after Ang II stimulation. Upon Ang II stimulation, hydrogen peroxide (H2O2) production in HASMCs increased at 2 min and 5 min decreased to near basal levels, and then increased again at 60 min. These results suggested that JNK activation, possibly JNK1, may play a role in Ang II-induced cellular senescence of VSMC.
Chinese Abstract………………………………………………Ⅱ
Abstract…………………………………………………………Ⅳ
Introduction……………………………………………………1
Materials and Methods……………………………………… 13
Results………………………………………………………… 32
Discussion………………………………………………………37
References………………………………………………………44
Figures………………………………………………………… 50
Appendix…………………………………………………………59
1.Saraff K, Babamusta F, Cassis LA, Daugherty A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(9):1621-1626.
2.Dalman RL, Tedesco MM, Myers J, Taylor CA. AAA disease: mechanism, stratification, and treatment. Ann N Y Acad Sci. 2006;1085:92-109.
3.Lederle FA, Johnson GR, Wilson SE, Chute EP, Littooy FN, Bandyk D, Krupski WC, Barone GW, Acher CW, Ballard DJ. Prevalence and associations of abdominal aortic aneurysm detected through screening. Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. Ann Intern Med. 1997;126(6):441-449.
4.Alcorn HG, Wolfson SK, Jr., Sutton-Tyrrell K, Kuller LH, O'Leary D. Risk factors for abdominal aortic aneurysms in older adults enrolled in The Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 1996;16(8):963-970.
5.Powell JT, Brady AR. Detection, management, and prospects for the medical treatment of small abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24(2):241-245.
6.Johnston KW. Ruptured abdominal aortic aneurysm: six-year follow-up results of a multicenter prospective study. Canadian Society for Vascular Surgery Aneurysm Study Group. J Vasc Surg. 1994;19(5):888-900.
7.Baxter BT, McGee GS, Shively VP, Drummond IA, Dixit SN, Yamauchi M, Pearce WH. Elastin content, cross-links, and mRNA in normal and aneurysmal human aorta. J Vasc Surg. 1992;16(2):192-200.
8.Sakalihasan N, Heyeres A, Nusgens BV, Limet R, Lapiere CM. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur J Vasc Surg. 1993;7(6):633-637.
9.Dobrin PB, Mrkvicka R. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg. 1994;2(4):484-488.
10.Walton LJ, Franklin IJ, Bayston T, Brown LC, Greenhalgh RM, Taylor GW, Powell JT. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation. 1999;100(1):48-54.
11.Hance KA, Tataria M, Ziporin SJ, Lee JK, Thompson RW. Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67-kD cell surface elastin receptor. J Vasc Surg. 2002;35(2):254-261.
12.Carrell TW, Burnand KG, Wells GM, Clements JM, Smith A. Stromelysin-1 (matrix metalloproteinase-3) and tissue inhibitor of metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurysms. Circulation. 2002;105(4):477-482.
13.Defawe OD, Colige A, Lambert CA, Munaut C, Delvenne P, Lapiere CM, Limet R, Nusgens BV, Sakalihasan N. TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc Res. 2003;60(1):205-213.
14.Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapiere CM. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg. 1996;24(1):127-133.
15.Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997;17(4):439-444.
16.Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest. 1998;102(11):1900-1910.
17.Davis V, Persidskaia R, Baca-Regen L, Itoh Y, Nagase H, Persidsky Y, Ghorpade A, Baxter BT. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 1998;18(10):1625-1633.
18.Mao D, Lee JK, VanVickle SJ, Thompson RW. Expression of collagenase-3 (MMP-13) in human abdominal aortic aneurysms and vascular smooth muscle cells in culture. Biochem Biophys Res Commun. 1999;261(3):904-910.
19.Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest. 2002;110(5):625-632.
20.Lopez-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 1997;150(3):993-1007.
21.Allaire E, Muscatelli-Groux B, Mandet C, Guinault AM, Bruneval P, Desgranges P, Clowes A, Melliere D, Becquemin JP. Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation. J Vasc Surg. 2002;36(5):1018-1026.
22.Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24(3):429-434.
23.Kunieda T, Minamino T, Nishi J, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S, Komuro I. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation. 2006;114(9):953-960.
24.Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, Hoshii Y, Tanaka N, Ricci R, Ishihara T, Esato K, Hamano K, Matsuzaki M. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med. 2005;11(12):1330-1338.
25.Raines EW. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol. 2000;81(3):173-182.
26.Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation. 1999;99(1):96-104.
27.Thompson RW, Geraghty PJ, Lee JK. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg. 2002;39(2):110-230.
28.Brown DL, Haley EC. Post-emergency department management of stroke. Emerg Med Clin North Am. 2002;20(3):687-702.
29.Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585-621.
30.Cristofalo VJ, Kritchevsky D. Cell size and nucleic acid content in the diploid human cell line WI-38 during aging. Med Exp Int J Exp Med. 1969;19(6):313-320.
31.Greenberg SB, Grove GL, Cristofalo VJ. Cell size in aging monolayer cultures. In Vitro. 1977;13(5):297-300.
32.Mitsui Y, Schneider EL. Relationship between cell replication and volume in senescent human diploid fibroblasts. Mech Ageing Dev. 1976;5(1):45-56.
33.Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363-9367.
34.Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol. 2007;371:21-31.
35.Cristofalo VJ, Kabakjian J. Lysosomal enzymes and aging in vitro: subcellular enzyme distribution and effect of hydrocortisone on cell life-span. Mech Ageing Dev. 1975;4(1):19-28.
36.Maciera-Coelho A, Garcia-Giralt E, Adrian M. Changes in lysosomal associated structures in human fibroblasts kept in resting phase. Proc Soc Exp Biol Med. 1971;138(2):712-718.
37.Brandes D, Murphy DG, Anton EB, Barnard S. Ultrastructural and cytochemical changes in cultured human lung cells. J Ultrastruct Res. 1972;39(5):465-483.
38.Comings DE, Okada TA. Electron microscopy of human fibroblasts in tissue culture during logarithmic and confluent stages of growth. Exp Cell Res. 1970;61(2):295-301.
39.Lipetz J, Cristofalo VJ. Ultrastructural changes accompanying the aging of human diploid cells in culture. J Ultrastruct Res. 1972;39(1):43-56.
40.Kurz T, Terman A, Brunk UT. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys. 2007;462(2):220-230.
41.Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703-716.
42.Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M. Tumour biology: senescence in premalignant tumours. Nature. 2005;436(7051):642.
43.Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, Goddard M, Bennett M. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006;99(2):156-164.
44.Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol. 1996;16(9):5210-5218.
45.Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593-602.
46.Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 2001;15(4):398-403.
47.Uhrbom L, Nister M, Westermark B. Induction of senescence in human malignant glioma cells by p16INK4A. Oncogene. 1997;15(5):505-514.
48.Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349-352.
49.Meng A, Wang Y, Van Zant G, Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res. 2003;63(17):5414-5419.
50.Kapic A, Helmbold H, Reimer R, Klotzsche O, Deppert W, Bohn W. Cooperation between p53 and p130(Rb2) in induction of cellular senescence. Cell Death Differ. 2006;13(2):324-334.
51.Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10(1-2):13-29.
52.Liao S, Curci JA, Kelley BJ, Sicard GA, Thompson RW. Accelerated replicative senescence of medial smooth muscle cells derived from abdominal aortic aneurysms compared to the adjacent inferior mesenteric artery. J Surg Res. 2000;92(1):85-95.
53.Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res. 2008;102(2):201-208.
54.Koch AE, Haines GK, Rizzo RJ, Radosevich JA, Pope RM, Robinson PG, Pearce WH. Human abdominal aortic aneurysms. Immunophenotypic analysis suggesting an immune-mediated response. Am J Pathol. 1990;137(5):1199-1213.
55.Brophy CM, Reilly JM, Smith GJ, Tilson MD. The role of inflammation in nonspecific abdominal aortic aneurysm disease. Ann Vasc Surg. 1991;5(3):229-233.
56.Newman KM, Jean-Claude J, Li H, Ramey WG, Tilson MD. Cytokines that activate proteolysis are increased in abdominal aortic aneurysms. Circulation. 1994;90(5 Pt 2):II224-227.
57.Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1995;15(8):1145-1151.
58.Shah PK. Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm. Circulation. 1997;96(7):2115-2117.
59.Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26(5):987-994.
60.Miller FJ, Jr., Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol. 2002;22(4):560-565.
61.McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2007;27(3):461-469.
62.Dubick MA, Keen CL, DiSilvestro RA, Eskelson CD, Ireton J, Hunter GC. Antioxidant enzyme activity in human abdominal aortic aneurysmal and occlusive disease. Proc Soc Exp Biol Med. 1999;220(1):39-45.
63.Sakalihasan N, Pincemail J, Defraigne JO, Nusgens B, Lapiere C, Limet R. Decrease of plasma vitamin E (alpha-tocopherol) levels in patients with abdominal aortic aneurysm. Ann N Y Acad Sci. 1996;800:278-282.
64.Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res. 2003;92(11):e80-86.
65.Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2(9):717-726.
66.Manning AM, Davis RJ. Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov. 2003;2(7):554-565.
67.Yoshimura K, Aoki H, Ikeda Y, Furutani A, Hamano K, Matsuzaki M. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase in mice. Ann N Y Acad Sci. 2006;1085:74-81.
68.Schmitz U, Ishida T, Ishida M, Surapisitchat J, Hasham MI, Pelech S, Berk BC. Angiotensin II stimulates p21-activated kinase in vascular smooth muscle cells: role in activation of JNK. Circ Res. 1998;82(12):1272-1278.
69.Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141-1148.
70.Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541-1544.
71.Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, Hersberger M, Eriksson U, Eberli FR, Becher B, Boren J, Chen M, Cybulsky MI, Moore KJ, Freeman MW, Wagner EF, Matter CM, Luscher TF. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science. 2004;306(5701):1558-1561.
72.Shan H, Bai X, Chen X. Angiotensin II induces endothelial cell senescence via the activation of mitogen-activated protein kinases. Cell Biochem Funct. 2008;26(4):459-466.
73.Probin V, Wang Y, Bai A, Zhou D. Busulfan selectively induces cellular senescence but not apoptosis in WI38 fibroblasts via a p53-independent but extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent mechanism. J Pharmacol Exp Ther. 2006;319(2):551-560.
74.Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension. 1998;32(3):488-495.
75.Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24(9):471-478.
76.Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998;273(24):15022-15029.
77.Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000;20(10):2175-2183.
78.Lee YA, Cho EJ, Yokozawa T. Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol Pharm Bull. 2008;31(6):1265-1269.
79.Chretien A, Piront N, Delaive E, Demazy C, Ninane N, Toussaint O. Increased abundance of cytoplasmic and nuclear caveolin 1 in human diploid fibroblasts in H(2)O(2)-induced premature senescence and interplay with p38alpha(MAPK). FEBS Lett. 2008;582(12):1685-1692.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top