|
1.Takaoka, M., Resveratrol, a new phenolic compound, from Veratrum grandiflorum. Nippon Kagaku Kaishi, 1939. 60: p. 1090-1100. 2.Nonomura, S., H. Kanagawa, and A. Makimoto, [Chemical Constituents of Polygonaceous Plants. I. Studies on the Components of Ko-J O-Kon.(Polygonum Cuspidatum Sieb. Et Zucc.)]. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 1963. 83: p. 988-990. 3.Chun-Fu, W., Y. Jing-Yu, W. Fang, and W. Xiao-Xiao, Resveratrol: botanical origin, pharmacological activity and applications. Chinese Journal of Natural Medicines, 2013. 11(1): p. 1-15. 4.Kanner, J., E. Frankel, R. Granit, B. German, and J.E. Kinsella, Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry, 1994. 42(1): p. 64-69. 5.Stanley, L.L. and M.P. Mazier, Potential explanations for the French paradox. Nutrition Research, 1999. 19(1): p. 3-15. 6.Fauconneau, B., P. Waffo-Teguo, F. Huguet, L. Barrier, A. Decendit, and J.-M. Merillon, Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sciences, 1997. 61(21): p. 2103-2110. 7.Goldberg, D.M., J. Yan, and G.J. Soleas, Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical Biochemistry, 2003. 36(1): p. 79-87. 8.Amri, A., J. Chaumeil, S. Sfar, and C. Charrueau, Administration of resveratrol: what formulation solutions to bioavailability limitations? Journal of Controlled Release, 2012. 158(2): p. 182-193. 9.Stivala, L.A., M. Savio, F. Carafoli, P. Perucca, L. Bianchi, G. Maga, L. Forti, U.M. Pagnoni, A. Albini, and E. Prosperi, Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. Journal of Biological Chemistry, 2001. 276(25): p. 22586-22594. 10.Vian, M.A., V. Tomao, S. Gallet, P. Coulomb, and J. Lacombe, Simple and rapid method for cis-and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using Chromolith columns. Journal of Chromatography A, 2005. 1085(2): p. 224-229. 11.Park, J.-W., Y.-J. Choi, M.-A. Jang, Y.-S. Lee, S.-I. Suh, W.-K. Baek, M.-H. Suh, N. Jin, and T.K. Kwon, Chemopreventive agent resveratrol, a natural product derived from grapes, reversibly inhibits progression through S and G2 phases of the cell cycle in U937 cells. Cancer Letters, 2001. 163(1): p. 43-49. 12.Urpi-Sarda, M., R. Zamora-Ros, R. Lamuela-Raventos, A. Cherubini, O. Jauregui, R. De La Torre, M.I. Covas, R. Estruch, W. Jaeger, and C. Andres-Lacueva, HPLC–tandem mass spectrometric method to characterize resveratrol metabolism in humans. Clinical Chemistry, 2007. 53(2): p. 292-299. 13.Brisdelli, F., G. D''Andrea, and A. Bozzi, Resveratrol: a natural polyphenol with multiple chemopreventive properties (review). Current Drug Metabolism, 2009. 10(6): p. 530-546. 14.Campagna, M. and C. Rivas, Antiviral activity of resveratrol. Biochemical Society Transactions, 2010. 38(1): p. 50-53. 15.Zordoky, B.N., I.M. Robertson, and J.R. Dyck, Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochimica et Biophysica Acta, 2015. 1852(6): p. 1155-1177. 16.Csiszar, A., K. Smith, N. Labinskyy, Z. Orosz, A. Rivera, and Z. Ungvari, Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells: role of NF-κB inhibition. American Journal of Physiology-Heart and Circulatory Physiology, 2006. 291(4): p. H1694-H1699. 17.Shen, M.Y., G. Hsiao, C.L. Liu, T.H. Fong, K.H. Lin, D.S. Chou, and J.R. Sheu, Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. British Journal of Haematology, 2007. 139(3): p. 475-485. 18.Wang, Z., Y. Huang, J. Zou, K. Cao, Y. Xu, and J.M. Wu, Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. International Journal of Molecular Medicine, 2002. 9(1): p. 77-79. 19.Tung, W.H., H.L. Hsieh, I.T. Lee, and C.M. Yang, Enterovirus 71 modulates a COX‐2/PGE2/cAMP‐dependent viral replication in human neuroblastoma cells: Role of the c‐Src/EGFR/p42/p44 MAPK/CREB signaling pathway. Journal of Cellular Biochemistry, 2011. 112(2): p. 559-570. 20.Kumar, N., Z.-t. Xin, Y. Liang, H. Ly, and Y. Liang, NF-κB signaling differentially regulates influenza virus RNA synthesis. Journal of Virology, 2008. 82(20): p. 9880-9889. 21.Joe, A.K., H. Liu, M. Suzui, M.E. Vural, D. Xiao, and I.B. Weinstein, Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clinical Cancer Research, 2002. 8(3): p. 893-903. 22.Estrov, Z., S. Shishodia, S. Faderl, D. Harris, Q. Van, H.M. Kantarjian, M. Talpaz, and B.B. Aggarwal, Resveratrol blocks interleukin-1β–induced activation of the nuclear transcription factor NF-κB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood, 2003. 102(3): p. 987-995. 23.Walle, T., F. Hsieh, M.H. DeLegge, J.E. Oatis, and U.K. Walle, High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition, 2004. 32(12): p. 1377-1382. 24.Soleas, G.J., M. Angelini, L. Grass, E.P. Diamandis, and D.M. Goldberg, Absorption of trans-resveratrol in rats. Methods in Enzymology, 2001. 335: p. 145-154. 25.De Santi, C., A. Pietrabissa, R. Spisni, F. Mosca, and G. Pacifici, Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica, 2000. 30(6): p. 609-617. 26.Cottart, C.H., V. Nivet‐Antoine, C. Laguillier‐Morizot, and J.L. Beaudeux, Resveratrol bioavailability and toxicity in humans. Molecular Nutrition & Food Research, 2010. 54(1): p. 7-16. 27.Sharma, D., M. Soni, S. Kumar, and G. Gupta, Solubility enhancement–Eminent role in poorly soluble drugs. Research Journal of Pharmacy and Technology, 2009. 2(2): p. 220-224. 28.Vemula, V.R., V. Lagishetty, and S. Lingala, Solubility enhancement techniques. International Journal of Pharmaceutical Sciences Review and Research, 2010. 5(1): p. 41-51. 29.López-Nicolás, J.M., E. Núñez-Delicado, A.J. Pérez-López, Á.C. Barrachina, and P. Cuadra-Crespo, Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography. Journal of Chromatography A, 2006. 1135(2): p. 158-165. 30.Basavaraj, S. and G.V. Betageri, Improved oral delivery of resveratrol using proliposomal formulation: investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opinion on Drug Delivery, 2014. 11(4): p. 493-503. 31.Teskač, K. and J. Kristl, The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. International Journal of Pharmaceutics, 2010. 390(1): p. 61-69. 32.Sessa, M., M.L. Balestrieri, G. Ferrari, L. Servillo, D. Castaldo, N. D’Onofrio, F. Donsì, and R. Tsao, Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chemistry, 2014. 147: p. 42-50. 33.Luo, Y., D. Chen, L. Ren, X. Zhao, and J. Qin, Solid lipid nanoparticles for enhancing vinpocetine''s oral bioavailability. Journal of Controlled Release, 2006. 114(1): p. 53-59. 34.Gershanik, T. and S. Benita, Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(1): p. 179-188. 35.Gursoy, R.N. and S. Benita, Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine & Pharmacotherapy, 2004. 58(3): p. 173-182. 36.Balakumar, K., C.V. Raghavan, and S. Abdu, Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids and Surfaces B: Biointerfaces, 2013. 112: p. 337-343. 37.Chime, S., F. Kenechukwu, and A. Attama, Nanoemulsions—Advances in Formulation, Characterization and applications in drug delivery. Ali DS. Application of Nanotechnology in Drug Delivery. Croatia: In Tech, 2014: p. 77-111. 38.Kawakami, K., T. Yoshikawa, Y. Moroto, E. Kanaoka, K. Takahashi, Y. Nishihara, and K. Masuda, Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design. Journal of Controlled Release, 2002. 81(1): p. 65-74. 39.Singh, B., S. Bandopadhyay, R. Kapil, R. Singh, and O.P. Katare, Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2009. 26(5). 40.Makadia, H.A., A.Y. Bhatt, R.B. Parmar, J.S. Paun, and H. Tank, Self-nano emulsifying drug delivery system (SNEDDS): Future aspects. Asian Journal of Pharmaceutical Research, 2013. 3(1): p. 21-27. 41.Goldberg, D.M., A. Karumanchiri, E. Ng, J. Yan, E.P. Diamandis, and G.J. Soleas, Direct gas chromatographic-mass spectrometric method to assay cis-resveratrol in wines: preliminary survey of its concentration in commercial wines. Journal of Agricultural and Food Chemistry, 1995. 43(5): p. 1245-1250. 42.Arce, L., M.a.T. Tena, A. Rios, and M. Valcárcel, Determination of trans-resveratrol and other polyphenols in wines by a continuous flow sample clean-up system followed by capillary electrophoresis separation. Analytica Chimica Acta, 1998. 359(1): p. 27-38. 43.Kolouchová-Hanzlı́ková, I., K. Melzoch, V.r. Filip, and J. Šmidrkal, Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chemistry, 2004. 87(1): p. 151-158. 44.Souto, A.A., M.C. Carneiro, M. Seferin, M.J. Senna, A. Conz, and K. Gobbi, Determination of trans-resveratrol concentrations in Brazilian red wines by HPLC. Journal of Food Composition and Analysis, 2001. 14(4): p. 441-445. 45.Careri, M., C. Corradini, L. Elviri, I. Nicoletti, and I. Zagnoni, Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. Journal of Agricultural and Food Chemistry, 2003. 51(18): p. 5226-5231. 46.Wang, Y., F. Catana, Y. Yang, R. Roderick, and R.B. van Breemen, An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. Journal of Agricultural and Food Chemistry, 2002. 50(3): p. 431-435. 47.Juan, M.E., R.M. Lamuela-Raventós, M.C. de la Torre-Boronat, and J.M. Planas, Determination of trans-resveratrol in plasma by HPLC. Analytical Chemistry, 1999. 71(3): p. 747-750. 48.Juan, M.E., M. Maijó, and J.M. Planas, Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 2010. 51(2): p. 391-398. 49.Almeida, L., M. Vaz‐da‐Silva, A. Falcão, E. Soares, R. Costa, A.I. Loureiro, C. Fernandes‐Lopes, J.F. Rocha, T. Nunes, and L. Wright, Pharmacokinetic and safety profile of trans‐resveratrol in a rising multiple‐dose study in healthy volunteers. Molecular Nutrition & Food Research, 2009. 53(S1): p. S7-S15. 50.Chen, X., H. He, G. Wang, B. Yang, W. Ren, L. Ma, and Q. Yu, Stereospecific determination of cis‐and trans‐resveratrol in rat plasma by HPLC: application to pharmacokinetic studies. Biomedical Chromatography, 2007. 21(3): p. 257-265. 51.Urpí-Sardà, M., O. Jáuregui, R.M. Lamuela-Raventós, W. Jaeger, M. Miksits, M.-I. Covas, and C. Andres-Lacueva, Uptake of diet resveratrol into the human low-density lipoprotein. Identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry. Analytical Chemistry, 2005. 77(10): p. 3149-3155. 52.Wang, D., T. Hang, C. Wu, and W. Liu, Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. Journal of Chromatography B, 2005. 829(1): p. 97-106. 53.Tan, A., S. Simovic, A.K. Davey, T. Rades, and C.A. Prestidge, Silica-lipid hybrid (SLH) microcapsules: A novel oral delivery system for poorly soluble drugs. Journal of Controlled Release, 2009. 134(1): p. 62-70. 54.Hu, L., Y. Jia, F. Niu, Z. Jia, X. Yang, and K. Jiao, Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. Journal of Agricultural and Food Chemistry, 2012. 60(29): p. 7137-7141. 55.Choudhury, H., B. Gorain, S. Karmakar, E. Biswas, G. Dey, R. Barik, M. Mandal, and T.K. Pal, Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. International Journal of Pharmaceutics, 2014. 460(1–2): p. 131-143. 56.Khoo, S.-M., A.J. Humberstone, C.J.H. Porter, G.A. Edwards, and W.N. Charman, Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. International Journal of Pharmaceutics, 1998. 167(1–2): p. 155-164. 57.Bali, V., M. Ali, and J. Ali, Nanocarrier for the enhanced bioavailability of a cardiovascular agent: In vitro, pharmacodynamic, pharmacokinetic and stability assessment. International Journal of Pharmaceutics, 2011. 403(1–2): p. 46-56. 58.Wu, Y.-T., Y.-F. Chen, Y.-J. Hsieh, I. Jaw, M.-S. Shiao, and T.-H. Tsai, Bioavailability of salvianolic acid B in conscious and freely moving rats. International Journal of Pharmaceutics, 2006. 326(1): p. 25-31. 59.Das, S., K.-Y. Ng, and P.C. Ho, Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: in vitro and in vivo evaluations. Journal of Drug Targeting, 2011. 19(6): p. 446-457. 60.Das, S., A. Chaudhury, and K.-Y. Ng, Polyethyleneimine-modified pectin beads for colon-specific drug delivery: In vitro and in vivo implications. Journal of Microencapsulation, 2011. 28(4): p. 268-279. 61.Chang, C.-W., C.-Y. Wong, Y.-T. Wu, and M.-C. Hsu, Development of a Solid Dispersion System for Improving the Oral Bioavailability of Resveratrol in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2016: p. 1-11. 62.Walle, T., Bioavailability of resveratrol. Annals of the New York Academy of Sciences, 2011. 1215(1): p. 9-15. 63.Date, A.A. and M. Nagarsenker, Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. International Journal of Pharmaceutics, 2007. 329(1): p. 166-172. 64.Balakrishnan, P., B.-J. Lee, D.H. Oh, J.O. Kim, Y.-I. Lee, D.-D. Kim, J.-P. Jee, Y.-B. Lee, J.S. Woo, and C.S. Yong, Enhanced oral bioavailability of Coenzyme Q 10 by self-emulsifying drug delivery systems. International Journal of Pharmaceutics, 2009. 374(1): p. 66-72. 65.Zhang, Z., Y. Huang, F. Gao, Z. Gao, H. Bu, W. Gu, and Y. Li, A self-assembled nanodelivery system enhances the oral bioavailability of daidzein: in vitro characteristics and in vivo performance. Nanomedicine, 2011. 6(8): p. 1365-1379. 66.Zhu, S., R. Huang, M. Hong, Y. Jiang, Z. Hu, C. Liu, and Y. Pei, Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450. European Journal of Pharmaceutical Sciences, 2009. 37(5): p. 573-580.
|