跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏清棋
研究生(外文):Ching-Chi Yen
論文名稱:白藜蘆醇自奈米乳化傳遞系統之開發及其藥物動力學評估
論文名稱(外文):Development of resveratrol self nano-emulsifying drug delivery system and pharmacokinetic evaluation
指導教授:吳育澤
指導教授(外文):Yu-Tse Wu
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:白藜蘆醇自奈米乳化傳遞系統藥物動力學
外文關鍵詞:Resveratrolself-nanoemulsifying delivery systemspharmacokinetic study
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白藜蘆醇為天然多酚類化合物,具有諸多生物活性,然而,白藜蘆醇因為本身的低溶解度及於體內被快速代謝等問題,限制了其在臨床上的應用。本研究的目的為製備及評估白藜蘆之自奈米乳化傳遞系統(SNEDS)劑型以增加其口服生體可用率;此外,本實驗亦開發液相層析串聯電化學偵測器(HPLC-EC)之分析方法偵測大鼠血漿中白藜蘆醇的含量。處方經由分散性、穿透度、粒徑大小、安定性及外觀型態進行評估,結果利用溶解度試驗優化之自奈米乳化處方包含Capryol 90,Cremophor EL及Tween 20,其平均粒徑大小為41.3 ± 7.0 nm,分散係數為0.38 ± 0.12,並且在4、25及40C的條件存放30天仍保持良好的安定性。實驗開發之HPLC-EC分析方法成功地運用於分析白藜蘆醇在大鼠血漿中之含量,根據動態系統伏安結果最終選擇+1.0 V作為氧化電位,分析方法的檢量線範圍為10至1500 ng mL-1之間,生物檢體檢測方式的最低定量極限為10 ng mL-1,並具有高度的線性關係(r2>0.9996),同日間及異日間的相對標準偏差小於11.2%,而白藜蘆醇的大鼠血漿萃取回收率高於91%。藥物動力學之結果顯示相較於口服給予未製成劑型之懸浮液,自奈米乳化傳遞系統可以提升白藜蘆醇高達3.1倍之口服生體可用率。

Resveratrol, a naturally occurring polyphenol, has shown various promising bioactivities. Unfortunately, resveratrol is restricted in clinical application due to poor dissolution and absorption. The aims of the current study were to develop and evaluate a self-nanoemulsifying delivery systems (SNEDS) to improve the oral bioavailability of resveratrol. Moreover, a sensitive HPLC-electrochemical detection (HPLC-EC) method for determination of resveratrol in rat plasma was developed. The developed formulations have been characterized by its dispersibility, percentage transmittance, droplet size, stability and morphology. The results indicated that the optimized self-nanoemulsifying formulation consisted of Capryol 90, Cremophor EL and Tween 20 based on the solubility test and it possessed an average particle size 41.3 ± 7.0 nm and the poly dispersity index of 0.38 ± 0.12. The resveratrol in self-nanoemulsifying formulation was stable at 4, 25 and 40C for 30 days. The developed bioanalytical method was successfully applied on the analysis of resveratrol in rat plasma by hydrodynamic voltammogram at +1.0V oxidative mode. The regression equation was linear (r2>0.9996) over the range of 10 ng mL-1 to 1500 ng mL-1 and possessed a limit of quantification of 10 ng mL-1. The RSD of inter- and intra-day assay were less than 11.2%. The recoveries for resveratrol was found to be greater than 91%. Pharmacokinetics study showed resveratrol SNEDS displayed an approximately 3.1-fold increase in oral bioavailability compared to the unformulated resveratrol suspension.

目錄 I
表目錄 V
圖目錄 VI
摘要 VII
Abstract VIII
壹、緒論 1
一、白藜蘆醇基本概述 1
(一) 白藜蘆醇介紹 1
(二) 白藜蘆醇物化特性 2
(三) 白藜蘆醇藥理活性 3
(四) 白藜蘆醇藥物動力學回顧 4
二、白藜蘆醇劑型回顧 6
(一) 自奈米乳化傳遞系統(SNEDS)簡介 7
(二) 油相及界面活性劑之選擇 8
(三) 優點及缺點 8
三、高效液相層析-電化學偵測器 12
貳、研究目的 14
參、實驗材料與儀器設備 15
一、材料與試劑 15
(一) 標準品 15
(二) 賦形劑 15
(三) 實驗試劑 16
二、儀器設備 16
(一) 高效液相層析儀 16
(二) 實驗設備 16
三、軟體 17
肆、研究方法 18
一、白藜蘆醇自奈米乳化傳遞系統之製備 18
(一) 紫外/可見光分光光譜儀全波長掃描 18
(二) 紫外/可見光分光光譜吸收校正曲線建立 18
(三) 賦形劑溶解度測試 18
(四) 自奈米乳化傳遞系統製備 19
二、白藜蘆醇自奈米乳化傳遞系統之評估 20
(一) 分散性試驗 (Dispersibility test) 20
(二) 穿透度試驗 (Percentage transmittance) 21
(三) 粒徑大小與分散係數 (Particle size and polydispersity index) 21
(四) 穿透式電子顯微鏡 22
(五) 處方單位含量測定 22
(六) 處方儲存安定性 22
三、白藜蘆醇於大鼠血漿中之分析方法開發 23
(一) 標準溶液之製備 23
(二) 電化學偵測器之工作電位選擇 23
(三) 移動相條件之選擇 23
(四) 血漿蛋白質沉澱劑之選擇 24
四、白藜蘆醇於大鼠血漿中之分析方法 24
(一) HPLC分析條件 24
(二) 電化學參數 25
(三) 血漿樣品前處理 25
(四) 檢量線建立 25
五、白藜蘆醇於大鼠血漿中之分析方法確效 26
(一) 分析方法之選擇性 26
(二) 分析方法之回收率 26
(三) 同日、異日精確度(Accuracy)與準確度(Precision) 27
(四) 分析方法之安定性 27
六、白藜蘆醇之藥物動力學研究 28
(一) 實驗動物 28
(二) 實驗動物分組 28
伍、結果 29
一、白藜蘆醇自奈米乳化傳遞系統之製備 29
(一) 紫外/可見光分光光譜儀全波長掃描 29
(二) 紫外/可見光分光光譜吸收校正曲線建立 30
(三) 賦形劑溶解度測試 30
(四) 自奈米乳化傳遞系統外觀 32
二、白藜蘆醇自奈米乳化傳遞系統之評估 33
(一) 分散性試驗(Dispersibility test) 33
(二) 穿透度試驗(Percentage transmittance) 36
(三) 粒徑分析與液滴型態分析 36
(四) 處方單位含量測定 39
(五) 處方儲存安定性 39
三、白藜蘆醇於大鼠血漿中之分析方法開發 41
(一) 電化學偵測器之工作電位選擇 41
(二) 移動相條件之選擇 42
(三) 血漿蛋白質沉澱劑之選擇 42
四、白藜蘆醇於大鼠血漿中之分析方法 43
(一) 檢量線建立 43
五、白藜蘆醇於大鼠血漿中之分析方法確效 44
(一) 分析方法之回收率 44
(二) 同日、異日精確度(Accuracy)與準確度(Precision) 44
(三) 分析方法之安定性 46
六、白藜蘆醇之藥物動力學研究 49
(一) 分析方法 49
(二) 藥物動力學 50
陸、討論 54
一、HPLC-EC分析方法應用於分析大鼠血漿中白藜蘆醇之優勢 54
二、白藜蘆醇自奈米乳化傳遞系統之藥物動力學探討 54
柒、結論 57
捌、參考文獻 59




1.Takaoka, M., Resveratrol, a new phenolic compound, from Veratrum grandiflorum. Nippon Kagaku Kaishi, 1939. 60: p. 1090-1100.
2.Nonomura, S., H. Kanagawa, and A. Makimoto, [Chemical Constituents of Polygonaceous Plants. I. Studies on the Components of Ko-J O-Kon.(Polygonum Cuspidatum Sieb. Et Zucc.)]. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 1963. 83: p. 988-990.
3.Chun-Fu, W., Y. Jing-Yu, W. Fang, and W. Xiao-Xiao, Resveratrol: botanical origin, pharmacological activity and applications. Chinese Journal of Natural Medicines, 2013. 11(1): p. 1-15.
4.Kanner, J., E. Frankel, R. Granit, B. German, and J.E. Kinsella, Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry, 1994. 42(1): p. 64-69.
5.Stanley, L.L. and M.P. Mazier, Potential explanations for the French paradox. Nutrition Research, 1999. 19(1): p. 3-15.
6.Fauconneau, B., P. Waffo-Teguo, F. Huguet, L. Barrier, A. Decendit, and J.-M. Merillon, Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sciences, 1997. 61(21): p. 2103-2110.
7.Goldberg, D.M., J. Yan, and G.J. Soleas, Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical Biochemistry, 2003. 36(1): p. 79-87.
8.Amri, A., J. Chaumeil, S. Sfar, and C. Charrueau, Administration of resveratrol: what formulation solutions to bioavailability limitations? Journal of Controlled Release, 2012. 158(2): p. 182-193.
9.Stivala, L.A., M. Savio, F. Carafoli, P. Perucca, L. Bianchi, G. Maga, L. Forti, U.M. Pagnoni, A. Albini, and E. Prosperi, Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. Journal of Biological Chemistry, 2001. 276(25): p. 22586-22594.
10.Vian, M.A., V. Tomao, S. Gallet, P. Coulomb, and J. Lacombe, Simple and rapid method for cis-and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using Chromolith columns. Journal of Chromatography A, 2005. 1085(2): p. 224-229.
11.Park, J.-W., Y.-J. Choi, M.-A. Jang, Y.-S. Lee, S.-I. Suh, W.-K. Baek, M.-H. Suh, N. Jin, and T.K. Kwon, Chemopreventive agent resveratrol, a natural product derived from grapes, reversibly inhibits progression through S and G2 phases of the cell cycle in U937 cells. Cancer Letters, 2001. 163(1): p. 43-49.
12.Urpi-Sarda, M., R. Zamora-Ros, R. Lamuela-Raventos, A. Cherubini, O. Jauregui, R. De La Torre, M.I. Covas, R. Estruch, W. Jaeger, and C. Andres-Lacueva, HPLC–tandem mass spectrometric method to characterize resveratrol metabolism in humans. Clinical Chemistry, 2007. 53(2): p. 292-299.
13.Brisdelli, F., G. D''Andrea, and A. Bozzi, Resveratrol: a natural polyphenol with multiple chemopreventive properties (review). Current Drug Metabolism, 2009. 10(6): p. 530-546.
14.Campagna, M. and C. Rivas, Antiviral activity of resveratrol. Biochemical Society Transactions, 2010. 38(1): p. 50-53.
15.Zordoky, B.N., I.M. Robertson, and J.R. Dyck, Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochimica et Biophysica Acta, 2015. 1852(6): p. 1155-1177.
16.Csiszar, A., K. Smith, N. Labinskyy, Z. Orosz, A. Rivera, and Z. Ungvari, Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells: role of NF-κB inhibition. American Journal of Physiology-Heart and Circulatory Physiology, 2006. 291(4): p. H1694-H1699.
17.Shen, M.Y., G. Hsiao, C.L. Liu, T.H. Fong, K.H. Lin, D.S. Chou, and J.R. Sheu, Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. British Journal of Haematology, 2007. 139(3): p. 475-485.
18.Wang, Z., Y. Huang, J. Zou, K. Cao, Y. Xu, and J.M. Wu, Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. International Journal of Molecular Medicine, 2002. 9(1): p. 77-79.
19.Tung, W.H., H.L. Hsieh, I.T. Lee, and C.M. Yang, Enterovirus 71 modulates a COX‐2/PGE2/cAMP‐dependent viral replication in human neuroblastoma cells: Role of the c‐Src/EGFR/p42/p44 MAPK/CREB signaling pathway. Journal of Cellular Biochemistry, 2011. 112(2): p. 559-570.
20.Kumar, N., Z.-t. Xin, Y. Liang, H. Ly, and Y. Liang, NF-κB signaling differentially regulates influenza virus RNA synthesis. Journal of Virology, 2008. 82(20): p. 9880-9889.
21.Joe, A.K., H. Liu, M. Suzui, M.E. Vural, D. Xiao, and I.B. Weinstein, Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clinical Cancer Research, 2002. 8(3): p. 893-903.
22.Estrov, Z., S. Shishodia, S. Faderl, D. Harris, Q. Van, H.M. Kantarjian, M. Talpaz, and B.B. Aggarwal, Resveratrol blocks interleukin-1β–induced activation of the nuclear transcription factor NF-κB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood, 2003. 102(3): p. 987-995.
23.Walle, T., F. Hsieh, M.H. DeLegge, J.E. Oatis, and U.K. Walle, High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition, 2004. 32(12): p. 1377-1382.
24.Soleas, G.J., M. Angelini, L. Grass, E.P. Diamandis, and D.M. Goldberg, Absorption of trans-resveratrol in rats. Methods in Enzymology, 2001. 335: p. 145-154.
25.De Santi, C., A. Pietrabissa, R. Spisni, F. Mosca, and G. Pacifici, Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica, 2000. 30(6): p. 609-617.
26.Cottart, C.H., V. Nivet‐Antoine, C. Laguillier‐Morizot, and J.L. Beaudeux, Resveratrol bioavailability and toxicity in humans. Molecular Nutrition & Food Research, 2010. 54(1): p. 7-16.
27.Sharma, D., M. Soni, S. Kumar, and G. Gupta, Solubility enhancement–Eminent role in poorly soluble drugs. Research Journal of Pharmacy and Technology, 2009. 2(2): p. 220-224.
28.Vemula, V.R., V. Lagishetty, and S. Lingala, Solubility enhancement techniques. International Journal of Pharmaceutical Sciences Review and Research, 2010. 5(1): p. 41-51.
29.López-Nicolás, J.M., E. Núñez-Delicado, A.J. Pérez-López, Á.C. Barrachina, and P. Cuadra-Crespo, Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography. Journal of Chromatography A, 2006. 1135(2): p. 158-165.
30.Basavaraj, S. and G.V. Betageri, Improved oral delivery of resveratrol using proliposomal formulation: investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opinion on Drug Delivery, 2014. 11(4): p. 493-503.
31.Teskač, K. and J. Kristl, The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. International Journal of Pharmaceutics, 2010. 390(1): p. 61-69.
32.Sessa, M., M.L. Balestrieri, G. Ferrari, L. Servillo, D. Castaldo, N. D’Onofrio, F. Donsì, and R. Tsao, Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chemistry, 2014. 147: p. 42-50.
33.Luo, Y., D. Chen, L. Ren, X. Zhao, and J. Qin, Solid lipid nanoparticles for enhancing vinpocetine''s oral bioavailability. Journal of Controlled Release, 2006. 114(1): p. 53-59.
34.Gershanik, T. and S. Benita, Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(1): p. 179-188.
35.Gursoy, R.N. and S. Benita, Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine & Pharmacotherapy, 2004. 58(3): p. 173-182.
36.Balakumar, K., C.V. Raghavan, and S. Abdu, Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids and Surfaces B: Biointerfaces, 2013. 112: p. 337-343.
37.Chime, S., F. Kenechukwu, and A. Attama, Nanoemulsions—Advances in Formulation, Characterization and applications in drug delivery. Ali DS. Application of Nanotechnology in Drug Delivery. Croatia: In Tech, 2014: p. 77-111.
38.Kawakami, K., T. Yoshikawa, Y. Moroto, E. Kanaoka, K. Takahashi, Y. Nishihara, and K. Masuda, Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design. Journal of Controlled Release, 2002. 81(1): p. 65-74.
39.Singh, B., S. Bandopadhyay, R. Kapil, R. Singh, and O.P. Katare, Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2009. 26(5).
40.Makadia, H.A., A.Y. Bhatt, R.B. Parmar, J.S. Paun, and H. Tank, Self-nano emulsifying drug delivery system (SNEDDS): Future aspects. Asian Journal of Pharmaceutical Research, 2013. 3(1): p. 21-27.
41.Goldberg, D.M., A. Karumanchiri, E. Ng, J. Yan, E.P. Diamandis, and G.J. Soleas, Direct gas chromatographic-mass spectrometric method to assay cis-resveratrol in wines: preliminary survey of its concentration in commercial wines. Journal of Agricultural and Food Chemistry, 1995. 43(5): p. 1245-1250.
42.Arce, L., M.a.T. Tena, A. Rios, and M. Valcárcel, Determination of trans-resveratrol and other polyphenols in wines by a continuous flow sample clean-up system followed by capillary electrophoresis separation. Analytica Chimica Acta, 1998. 359(1): p. 27-38.
43.Kolouchová-Hanzlı́ková, I., K. Melzoch, V.r. Filip, and J. Šmidrkal, Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chemistry, 2004. 87(1): p. 151-158.
44.Souto, A.A., M.C. Carneiro, M. Seferin, M.J. Senna, A. Conz, and K. Gobbi, Determination of trans-resveratrol concentrations in Brazilian red wines by HPLC. Journal of Food Composition and Analysis, 2001. 14(4): p. 441-445.
45.Careri, M., C. Corradini, L. Elviri, I. Nicoletti, and I. Zagnoni, Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. Journal of Agricultural and Food Chemistry, 2003. 51(18): p. 5226-5231.
46.Wang, Y., F. Catana, Y. Yang, R. Roderick, and R.B. van Breemen, An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. Journal of Agricultural and Food Chemistry, 2002. 50(3): p. 431-435.
47.Juan, M.E., R.M. Lamuela-Raventós, M.C. de la Torre-Boronat, and J.M. Planas, Determination of trans-resveratrol in plasma by HPLC. Analytical Chemistry, 1999. 71(3): p. 747-750.
48.Juan, M.E., M. Maijó, and J.M. Planas, Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 2010. 51(2): p. 391-398.
49.Almeida, L., M. Vaz‐da‐Silva, A. Falcão, E. Soares, R. Costa, A.I. Loureiro, C. Fernandes‐Lopes, J.F. Rocha, T. Nunes, and L. Wright, Pharmacokinetic and safety profile of trans‐resveratrol in a rising multiple‐dose study in healthy volunteers. Molecular Nutrition & Food Research, 2009. 53(S1): p. S7-S15.
50.Chen, X., H. He, G. Wang, B. Yang, W. Ren, L. Ma, and Q. Yu, Stereospecific determination of cis‐and trans‐resveratrol in rat plasma by HPLC: application to pharmacokinetic studies. Biomedical Chromatography, 2007. 21(3): p. 257-265.
51.Urpí-Sardà, M., O. Jáuregui, R.M. Lamuela-Raventós, W. Jaeger, M. Miksits, M.-I. Covas, and C. Andres-Lacueva, Uptake of diet resveratrol into the human low-density lipoprotein. Identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry. Analytical Chemistry, 2005. 77(10): p. 3149-3155.
52.Wang, D., T. Hang, C. Wu, and W. Liu, Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. Journal of Chromatography B, 2005. 829(1): p. 97-106.
53.Tan, A., S. Simovic, A.K. Davey, T. Rades, and C.A. Prestidge, Silica-lipid hybrid (SLH) microcapsules: A novel oral delivery system for poorly soluble drugs. Journal of Controlled Release, 2009. 134(1): p. 62-70.
54.Hu, L., Y. Jia, F. Niu, Z. Jia, X. Yang, and K. Jiao, Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. Journal of Agricultural and Food Chemistry, 2012. 60(29): p. 7137-7141.
55.Choudhury, H., B. Gorain, S. Karmakar, E. Biswas, G. Dey, R. Barik, M. Mandal, and T.K. Pal, Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. International Journal of Pharmaceutics, 2014. 460(1–2): p. 131-143.
56.Khoo, S.-M., A.J. Humberstone, C.J.H. Porter, G.A. Edwards, and W.N. Charman, Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. International Journal of Pharmaceutics, 1998. 167(1–2): p. 155-164.
57.Bali, V., M. Ali, and J. Ali, Nanocarrier for the enhanced bioavailability of a cardiovascular agent: In vitro, pharmacodynamic, pharmacokinetic and stability assessment. International Journal of Pharmaceutics, 2011. 403(1–2): p. 46-56.
58.Wu, Y.-T., Y.-F. Chen, Y.-J. Hsieh, I. Jaw, M.-S. Shiao, and T.-H. Tsai, Bioavailability of salvianolic acid B in conscious and freely moving rats. International Journal of Pharmaceutics, 2006. 326(1): p. 25-31.
59.Das, S., K.-Y. Ng, and P.C. Ho, Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: in vitro and in vivo evaluations. Journal of Drug Targeting, 2011. 19(6): p. 446-457.
60.Das, S., A. Chaudhury, and K.-Y. Ng, Polyethyleneimine-modified pectin beads for colon-specific drug delivery: In vitro and in vivo implications. Journal of Microencapsulation, 2011. 28(4): p. 268-279.
61.Chang, C.-W., C.-Y. Wong, Y.-T. Wu, and M.-C. Hsu, Development of a Solid Dispersion System for Improving the Oral Bioavailability of Resveratrol in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2016: p. 1-11.
62.Walle, T., Bioavailability of resveratrol. Annals of the New York Academy of Sciences, 2011. 1215(1): p. 9-15.
63.Date, A.A. and M. Nagarsenker, Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. International Journal of Pharmaceutics, 2007. 329(1): p. 166-172.
64.Balakrishnan, P., B.-J. Lee, D.H. Oh, J.O. Kim, Y.-I. Lee, D.-D. Kim, J.-P. Jee, Y.-B. Lee, J.S. Woo, and C.S. Yong, Enhanced oral bioavailability of Coenzyme Q 10 by self-emulsifying drug delivery systems. International Journal of Pharmaceutics, 2009. 374(1): p. 66-72.
65.Zhang, Z., Y. Huang, F. Gao, Z. Gao, H. Bu, W. Gu, and Y. Li, A self-assembled nanodelivery system enhances the oral bioavailability of daidzein: in vitro characteristics and in vivo performance. Nanomedicine, 2011. 6(8): p. 1365-1379.
66.Zhu, S., R. Huang, M. Hong, Y. Jiang, Z. Hu, C. Liu, and Y. Pei, Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450. European Journal of Pharmaceutical Sciences, 2009. 37(5): p. 573-580.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top