|
[1]R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: 179-188, 1936. [2]R.O.Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 1973. [3]S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural Networks for Signal Processing IX, pages 41-48. IEEE, 1999. [4]B. Schölkopf, A.J. Smola, & K.-R. Müller. Nonlinear component analysis as kernel eigenvalue problem. Neural Computation, 10: 1299-1319, 1998. [5]B. Schölkopf, C.J.C. Burges, & A. J. Smola, editors. Advanced in Kernel Methods – Support Vector Machine. MIT Press, Cambridge, MA, 1999. [6]S. Mika, G. Rätsch, and K.-R. Müller. A mathematical programming approach to the Kernel Fisher algorithm. In Advances in Neural Information Processing Systems 13, 2001. to appear. [7]Jianhua Xu, Xuegong Zhang, Yanda Li. Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR. Proceedings of 2001 International Joint Conference on Neural Networks (IJCNN’01), 1486-1491, 2001. Washington DC, USA, July 15-19, 2001. (EI) [8]G. Strang. Linear Algebra and Its Applications. 1988. Thomson Learning, Inc., 3rd edition. [9]S. Mika, A.J. Smola, and B. Schölkopf. An improved training algorithm for kernel fisher discriminants. In Proceedings AISTATS 2001. Morgan Kaufmann, 2001. to appear. [10]G.H. Golub and C.F. van Loan. Matrix Computations. John Hopkins University Press, Baltimore, London, 3rd edition, 1996. [11]NC classifier Jianguo Zhang and Kai-Kuang Ma, “Kernel Fisher Discriminant for Texture Classification”, 2004. [12]University of Minnesota. 2006. Computer Science & Engineering. 12 Jun. 2006 http://www-users.cs.umn.edu/~hpark/data.html. [13]Chih-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin, “A Practical Guide to Support Vector Classification,” available http://www.csie.ntu.edu.tw/~cjlin/papaers/guide/guide.pdf [14]Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm [15]UCI Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLRepository.html
|