跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭元政
研究生(外文):Yuang-Cheng Cheng
論文名稱:以厚膜網印法製作半導體式一氧化碳感測器之研究
論文名稱(外文):Development of semiconductor type CO sensor by using thick-film screen printing method
指導教授:陶惟翰陶惟翰引用關係
指導教授(外文):Wei-Han Tao
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與製造研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:104
中文關鍵詞:厚膜網印法一氧化碳感測器氧化鋅半導體式
外文關鍵詞:thick-film screen printing methodCO sensorZinc Oxidesemiconductor type
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是以厚膜網印法製作半導體式一氧化碳感測器(CO Sensor)。以氧化鋅(ZnO)及二氧化錫(SnO2)兩種粉末製成CO感測層的材料,再將感測層網印在Al2O3基板(Substrate)上。利用精密厚膜網印機,製作感測器電極、加熱器及感測層,其目的是縮小感測元件體積,節省空間降低成本,且製造方法簡易可快速製造及大量生產。
以旋轉塗佈的方法,將含有Au、Pd觸媒的溶劑塗佈(Coating)在感測層表面或用三滾筒將觸媒摻雜(Doping)在感測層內部,以增加靈敏度並降低操作溫度,並且可縮短應答(Response)及回覆(Recovery)的時間。
本研究感測結果可知ZnO比SnO2對CO感度較高,在CO濃度50ppm時,其感度(Sensitivity)約為5倍。而溫度在200℃,所需0.5Watts的功率有較高的感度。以表面塗佈的方式,塗佈5層觸媒感度為最佳,其應答時間為8秒,回復時間為66秒。

ABSTRACT
The purpose of this research is to develop a semiconductor type CO sensor by using thick-film screen printing method. To manufacture CO sensing layer by the powers of the ZnO and SnO2, then it is screen printing on the Al2O3 substrate of the sensing layer. To manufacture sensor electrode、 heater and sensing layer by using screen print mechanic, The objective is shrinking volume size of the sensor cell, economize the space size reducity the capital and simply the manufacture processes and mass production.
By the screen coating method, we use solvent include Au、Pd catalyst coating on the sensing layer surface or use three-roller mechanic doping catalyst in the sensing layer, increase sensitivity and let working temperature down, and reducity response time and recovery time.
From the research results we know that ZnO have high sensitivity to CO gas than SnO2, the sensitivity 5 at CO gas concentration 50 ppm. The temperature at 200℃need 0.5 watts can get higher sensitivity .Using the way of the surface coating we can get the best sensitivity when coating 5 layers catalyst, and response time is 8 seconds and recovery time is 66 seconds.

目 錄
目 錄 I
表 目 錄 IV
圖 目 錄 V
中文摘要 1
ABSTRACT 3
第一章 緒論..................................................4
1-1、前言.................................................4
1-2、研究動機.............................................9
第二章 文獻回顧與原理.......................................10
2-1、一氧化碳感測器.........................................13
2-1-1.接觸燃燒式氣體感測器.............................14
2-1-2.定電位電解質式氣體感測器.........................17
2-1-3.半導體式氣體感測器...............................20
2-2、氧化鋅的結構...........................................26
2-2-1.ZnO材料的特性.....................................28
2-3、半導體式感測原理.......................................29
2-4、摻雜理論...............................................32
2-5、觸媒作用原理...........................................33
第三章 實驗方法與製程分析...................................36
3-1、實驗設備...............................................37
3-2、實驗材料...............................................38
3-3、感測材料製配...........................................39
3-3-1.觸媒添加方式.....................................41
3-4、網印成型...............................................44
3-4-1.網印電極層.......................................45
3-4-2網印加熱層........................................47
3-4-3網印感測層........................................48
3-5、接線封裝...............................................51
3-6、測試系統...............................................54
第四章 實驗結果與量測分析...................................56
4-1、加熱器電阻分佈率結果...................................57
4-2、熟化後加熱器電阻變化...................................57
4-3、可變RL電阻對感度測試結果..........................60
4-4、電阻加熱器功率對溫度的變...............................63
4-5、溫度對感度的影響.......................................64
4-6、CO感度測試.............................................66
4-7、選擇性測試.............................................74
4-8、CO感度再現性測試.......................................83
4-9、應答時間...............................................94
第五章 結論.................................................97
參考文獻....................................................99
表 目 錄
表1-1、各種有毒氣體之TLV值.................................6
表1-2、一氧化碳濃度對人體的影..............................7
表1-3、一氧化碳感測器製造方法與特性的比較..................8
表2-1、化學感測器發展史....................................11
表3-1、各材料在液態比與固態比..............................39
圖 目 錄
圖2-1接觸燃燒式氣體感測器結構圖............................15
圖2-2.定電位電解質式感測器結構圖...........................18
圖2-3.半導體陶瓷型氣體感測器之構造圖.......................21
圖2-4.半導體式薄膜型元件圖.................................22
圖2-5.半導體式厚膜型元件圖.................................23
圖2-6.(a)Structure Of ZnO; Wurtzite Structure.............27
圖2-6(b) Structure Of ZnO; ZIze Blende Structure .........27
圖2-7.還原性氣體感測能帶模型圖與電子移動方向圖.............30
圖2-8.氧化性氣體感測能帶模型圖與電子移動方向圖.............31
圖2-9.Sensitization Mechanism of SnO2 Sensor ..............35
圖3-1.感測材料配製流程圖...................................40
圖3-2.內部摻雜觸媒與表面塗佈觸媒流程圖.....................43
圖3-3.輸送帶頻率與速度對照曲線.............................46
圖3-4.感測材料燒結曲線圖...................................49
圖3-5.感測元件結構圖.......................................50
圖3-6.感測元件接線圖.......................................52
圖3-7.元件封裝成品解剖圖...................................53
圖3-8.半導體式一氧化碳測試流程圖...........................55
圖4-1.加熱器電阻分佈率.....................................58
圖4-2.熟化後加熱器電阻變化圖...............................59
圖4-3.測試電路圖...........................................61
圖4-4.不同電阻RL在50ppm的CO濃度下感度變化圖................62
圖4-5.加熱器電阻功率對溫度的變化圖.........................63
圖4-6.溫度對50ppmCO濃度感度圖..............................65
圖4-7.SnO2為感測層塗佈3至5層觸媒與未塗佈觸媒對CO感度圖.....68
圖4-8.ZnO為感測層塗佈3至5層觸媒與未塗佈觸媒對CO感度圖......69
圖4-9. ZnO感測層表面塗佈觸媒(AC)、內部摻雜觸媒(AD)與商用TGS-800對CO感度圖.................................................71
圖4-10.加MCM-41 之ZnO感測層表面塗佈觸媒(BC)、內部摻雜觸媒(BD)與商用TGS-800對CO感度圖......................................72
圖4-11.添加鈀黑之ZnO感測層表面塗佈觸媒(CC)、內部摻雜觸媒(CD)與商用TGS-800對CO感度圖........................................73
圖4-12. ZnO感測層表面塗佈觸媒對H2S、H2、CO、CH4選擇性圖....75
圖4-13. ZnO感測層內部摻雜觸媒對H2S、H2、CO、CH4選擇性圖....76
圖4-14.添加MC M-41之ZnO感測層表面塗佈觸媒對H2S、H2、CO、CH4選擇性圖.......................................................78
圖4-15.添加MCM-41之ZnO感測層內部摻雜觸媒對H2S、H2、CO、CH4選擇性圖.........................................................79
圖4-16. 添加鈀黑之ZnO感測層表面塗佈觸媒對H2S、H2、CO、CH4選擇性圖.........................................................81
圖4-17. 添加鈀黑之ZnO感測層內部摻雜觸媒對H2S、H2、CO、CH4選擇性圖.........................................................82
圖4-18. ZnO感測層表面塗佈觸媒在50ppm CO時電壓再現性圖......84
圖4-19. ZnO感測層表面塗佈觸媒在50ppm CO時電阻再現性圖......85
圖4-20. ZnO感測層內部摻雜觸媒在50ppm CO時電壓再現性圖......86
圖4-21. ZnO感測層內部摻雜觸媒在50ppm CO時電阻再現性圖......87
圖4-22.添加MCM-41之ZnO感測層表面塗佈觸媒在50ppm CO時電阻再現圖.........................................................89
圖4-23.添加MCM-41之ZnO感測層內部摻雜觸媒在50ppm CO時電阻再現圖.........................................................90
圖4-24.添加鈀黑之ZnO感測層表面塗佈觸媒在50ppmCO時電阻再現圖.92
圖4-25.添加鈀黑之ZnO感測層內部摻雜觸媒在50ppmCO時電阻再現圖.93
圖4-26. ZnO感測層表面塗佈觸媒對CO感度應答時間..............95
圖4-27.TGS-800 CO感度的應答時間............................96

1.R . Ionesca , V .. Vasilescu and Ana Vancu ,“Conduction Relationship in chemoresistive thick-film SnO2 gas sensor”, Sensors and Actuators B8 , p151-154 , 1992.
2.K . K . Murav’eva and Ya . S . Smirnov ,“Preparation of Zinc Oxide for gas sensors”Lensovet Leningrad Technological Institute. Vol . 64 , No . 11 , p2264-2269 , November , 1991 .
3.Dong , L . F . ; Cui , Z . L . ; Zhang , Z.K.“Gas sensing properties of nano-ZnO prepared by arc plasma method”,Nanostructured Materials v8 , n7 Elsevier Sci Ltd Exeter Engl p815-823 , 1997.
4.行政院勞工委員會,“勞工作業環境空氣中有害物質容許濃度標準”,台北,1985。
5.羅俊光,“大器分析級標準有機氣體配製技術”,化學技術研習會(1),度量衡國家標準實驗室。
6.“Encyclopdia of Chemical Technology” Vol . 4, 2 nd Ed. , Interscience Publishers , New York , 1964 .
7.“物質安全資料表”,新竹工研院能資所,1999。
8.P . B . Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemsiorption and catalysis” , J . Chem . Phys , V21 , p1531- 1538 , 1953.
9.T . seiyama , A . Kato , K. Fajiishi , M . Nagatahi , “A new detector for gaseous components using semiconductive thin films”, Analystical chemistry 34 , p1502 , 1962.
10.Guy Toumier , Christophe Pijolat , Rene Lalauze , Bruno atissier ; “Selective detection of CO and CI-Li with gas sensors using SnO2 dopec with palladium”,Sensors and Actuators , B26-27 , P24-28 , 1995.
11.Hong-Ming Lm , Chiim-Yen Timg , and Chi-Ming Hsu , “Catalylic properties of nanocrystalime WO3-x,pt/ WO3-x and pd/WO3-x particals” , Journal of Materials Research , v 10 , No5 , p1115-1119 , 1995 .
12.Hong-Ming Lm , Teh-Yu Hsu , CInun-Yen Tung , Chi- Ming Hsu , “Hydrogen sulfide detection by nanocrystal Pt doped TiO2 base gas sensors”, Nanostructured Materials , v6 , n5-8 , pl001-1004 , 1995.
13.S . N . Malchenko , Y . N . Lychkovsky , M . V . Baykov , “In2O3 based gas sensors” , Sensors and Actuators.B chemical, B14 , nl-3 , pl59-161 , 1993.
14.眭曉林,固態化學感測元件之機體化設計,材料與社會,第60期,p56-61,1984。
15.Kyung . Hyun Cha ' Hee Chan Park , Kwang Ho Kirn . “Effect of palladium doping and film thickness on the H2-gas sensing characteristics of SnO2”, Sensor and Actuators , B21 , p91-96, 1994.
16. G . B . Barbi' J . P . Santos' P . Serrini' P . N. Gibson ' M . C . Horrillo ' L . Manes . “Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments” , Sensors and Actuators , B24-25 , p559-563 , 1995.
17.G . Sberveglieri' G . Faglia S . Groppelli 'P . Nelli and . Perego , “0xygen gas sensing properties of undoped and Li-doped SnO2 thin films”, Sensors and Actuators , B13-14 , p117-120 , 1993.
18.J . Frank , M . Fieischer . H . Meixner Electrical , “Doping of Gassensitive Semiconducting Ga203thLn films” , the 8th international conference on solid-state Sensors and Actuatoes , p 850-853 , 1995.
19.D . Rosenfeld , R . Sanjines , W . H . Schreinerand F . Levy , “Gas sensitive and selective SnO2 thin polycrystalline films doped by ion implantation” , Sensors and Actuators , B15-16 , p406-409 , 1993 .
20.C . S . Rastomjee , R . S . Dale , R . J . Schaffer , . H . Jones , . G . Egdell , G . C . Georgiadis , M . J .Lee , T . J . Tate , L.L.Cao , “An investigation of doping of SnO2 by ion implantation and application of ion-implanted films as gas sensors” , Thin Solid Films V279 , P98-105 ,1996.
21.“氣體監測器選用指引”工業技術研究院工安衛中心, 1993.
22.T . Kobayashi , M . Haruta , S . Tsubota , and H. Sano , “Thin Films of Supported Gold Catalysts for CO Detection”, Sensors and Actuators , B1 , pp . 222-225 , 1990.
23.A . B . Laconti , and H. J. R. Maget , “Electrochemical Detection oj H2 , CO , and Hydrocarbons in Inert or Oxygen Atmospheres”, J . Electrochem.Soc. , 118 , pp.506-510 , 1971.
24.陳一誠, “金屬氧化物半導體型氣體感測器”, 材料與科學, p62-66, 第68期 , 1992.
25.莊達人,“VLSI製造技術”, 高立圖書出版社,1998.
26.J . H . Morgqn and D . E . Brodie , “The Preparation and Some Properties if Transparent Conducting ZnO for Use in Solar Cells” , Can . J . Phys . 60 , pp . 1387-1390 , 1982.
27.Guy Tournier , Christophe Pijolat, Rene Lalauze , Bruno Patissier,“Selective detection of CO and CH4 With gas sensors using SnO2 doped with palladium”, Sensors and Actuators , B26-27 , p24-28 , 1995.
28.B . Bott , T . A . Jones and B . Mann , “The detection and meassurement of CO using ZnO single Crystal” , Sensor and Actuators , B5 , p65-73 , 1985.
29.T . Kobayashi , M . Haruta , H . Sano , and M . Nakane , “A Selective CO Sensor Using Ti-doped —Fe2O3 with Coprecipitated Ultrafine Particles of Gold ” , Sensors and Actuators , 13 , p339-349 , 1988.
30.S . M . Sze , Semiconductor Sensors , Tohn Wiley and Sons , 1994
31.Shigenori , Matsushina , “New Methods for Supporting Palladium on a Tin Oxide Gas Sensors” , Sensors and Actuators B , 9 , p71-78 , 1992.
32.Sulz Gerd, “Ni , IN and Sb implanted Pt and V catalyzed thin-film SnO2 gas sensors”, Sensors and Actuators , B , v B16 , p390-395 , 1993.
33.Dutronc , P . “Potentially selective methane sensor based on the differential conductivity responses of Pd -and Pt-doped tin oxide thick layers”, Sensors and Actuators , B ,v B16 , p384-389 , 1993.
34.Schweizer-Berberich , M . “Effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO”, Sensors and Actuators , B , v B31 , p71-75 , 1995.
35.Steiner , Klaus . “Ca- and Pt-catalyzed thin-film SnO2 gas sensors for CO and CO2 detection”, Sensors and Actuators , B , vB25 , p529-531 , 1994
36.Shigenori , Matsushima , Yasutake Teraoka, Norio Miura and Noboru Yamazoe , “Electronic Interaction Between Metal Additives and Tin Dioxide in Tin Dioxide-Based Gas Sensors” , Japanese J. of Applied Phy. , Vol. 27, No . 10 , October , pp . l798-1802 , 1988
37.P . A . Sermon and G . C . Bond , Hydrogen Spillover , Catal . Rev . 8 ,p 211 , 1973.
38.W . C . Conner , Jr . G . M . Pajonk , and S . J . Teichner , Spillover of adsorbed Species , Adv . Catal . 34 , 1 , 1986.
39.S . R . Morrison ,“Selectivity in semiconductor gas sensors”, Sensors and Actuators , B12 , p425 . 1987.
40.Golovanov , V . “Different thick-film methods in printing of one-electrode semiconductor gas sensors” , International Conference on Solid-State Sensors and Actuators , v2 , p874-877 , 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top