|
1. K. C. Chiu and F. Rosenberger, Mixed Convection between Horizontal Plates-Ⅰ. Entrance Effect, Int. J. Heat and Fluid Flow No. 30, 1645-1654 (1987). 2. E. L. Koschmieder, Béonard cell and Taylor vortices, Cambridge University Press, Combirdge, 1993 (Chapter 5). 3. Y. Mori, Buoyancy Effects in Forced Laminar Convection Flow Over a Horizontal Flat Plate, J. Heat Transfer 83, 479-482 (1961). 4. E. M. Sparrow, W. J. Minkowycz, Buoyancy Effects on Horizontal Boundary-layer Flow and Heat Transfer, Int. J. Heat Mass Transfer 5, 505-511 (1962). 5. F. C. Eversteyn, P. J. W. Severin, C. H. J. v. d. Brekel and H. L. Peek, A Stagnant Layer Model for the Epitaxial Growth of Silicon form Silane in a Horizontal Reactor, J. Electrochem. Soc. 117, 925-931 (1970). 6. Y. Kamotani, S. Ostrach, and H. Miao, Convection Heat Transfer Augmentation in Thermal Entrance Regions by Means of Thermal Instability, J. Heat Transfer 101, 222-226 (1979). 7. L. J. Giling, Gas Flow Patterns in Horizontal Epitaxial Reactor Cells Observed by Interference Holography, J. Electrochem. Soc. 129, 634-644 (1982). 8. J. Ouazzani, K.-C. Chiu and F. Rosenberger, On the 2D Modeling of Horizontal CVD Reactors and its Limitatons, J. Gryst. Growth 91, 497-508 (1988). 9. J. Ouazzani, and F. Rosenberger, Three-Dimensional Modeling of Horizontal Chemical Vapor Deposition- Ⅰ. MOCVD at Atmospheric Pressure, J. Gryst. Growth 100, 545-576 (1990). 10. R. J. Field, Simulations of Two-Dimensional Recirculating Flow Effects in Horizontal MOVPE, J. Gryst. Growth 97, 739-760 (1989). 11. W. L. Holstein and J. L. Fitzjohn, Effect of Buoyancy Forces and Reactor Orientation on Fluid Flow and Growth Rate Uniformity in Cold-Wall Channel CVD Reactors, J. Gryst. Growth 94, 145-158 (1989). 12. E. P. Visser, C. R. Kleijn, C. A. M. Govers, C. J. Hoogendoorn, & L. J. Giling, Return Flows in Horizontal MOCVD Reactors Studied with the Use of TiO2 Particle Injection and Numerical Calculations, J. Gryst. Growth 94, 929-946 (1989). 13. D. I. Fotiadis, K. F. Jensen and W. Richter, Flow and Heat Transfer in CVD Reactors:Comparison of Raman Temperature Measurements and Finite Element Model Predictions, J. Gryst. Growth 100, 577-599 (1990). 14. E. O. Einset, K. F. Jensen and C. R. Kleijn, On the Origin of Return Flows in Horizontal Chemical Vapor Deposition Reactors, J. Gryst. Growth 132, 483-490 (1993). 15. K. C. Karki, P. S. Sathyamurthy, and S. V. Patankar, Three-Dimensional Mixed Convection in A Horizontal Chemical Vapor Deposition Reactor, J. Heat Transfer 115, 803-806 (1993). 16. N. K. Ingle and T. J. Mountziaris, The onset of Transverse Recirculations during Flow of Gases in Horizontal Ducts with Differentially Heated Lower Walls, J. Fluid Mech. Vol. 277, 249-269 (1994). 17. J. W. Zhang, H. K. Gao, J. K. Zhang and Y. Yand, Numerical Simulation of Return Flow in MOCVD Reactor, Chinese Journal Semicinfuctor V.15 n4, 268-272 (1994). 18. D. B. Ingham and P. Watson, Recirculating Laminar Mixed Convection in a Horizontal Parallel Plate Duct, Int. J. Heat and Fluid Flow No. 16, 202-210 (1995). 19. D. B. Ingham, P. J. Heggs and P. Watson, Upstream Migration of Heat during Combined Convection in A Horizontal Parallel Plate Duct, Int. J. Heat Mass Transfer Vol. 39 No. 2, pp. 437-440, (1996). 20. T. M. Makhviladze and A. V. Martjushecko, Several Aspects of the Return Flows Formation in Horizontal CVD Reactors, Int. J. Heat and Fluid Flow No. 16, 2529-2536 (1998). 21. X. Nicolas, J. -M. Luijkx, J. —K. Platten, Linear Stability of Mixed Convection Flows in Horizontal Rectangular Channels of Finite Transversal Extension Heated from Below, Int. J. Heat and Mass Transfer 43, 589-610 (2000). 22. K. W. Park, and H. Y. Pak, Characteristics of Three-Dimensional Flow, Heat, and Mass Transfer in A Chemical Vapor Deposition Reactor, Numerical Heat Transfer, Part A 37, 407-423 (2000). 23. C. H. Yu, M. Y. Chang, C. C. Huang and T. F. Lin, Unsteady vortex roll structures in a mixed convective air flow through a horizontal plane channel — a numerical study, Int. J. Heat Mass Transfer Vol. 40, No. 3, 505-518 (1997). 24. M. Y. Chang and T. F. Lin, Vortex flow pattern selection and temporal-spatial structures of transverse and mixed vortex rolls in mixed convection of air in a horizontal flat duct, Phys. Rev. E54, 5146-5160 (1996). 25. M. Y. Chang, C. H. Yu and T. F. Lin, Flow visualization and numerical simulation of transverse and mixed vortex roll formation in mixed convection of air in a horizontal flat duct, Int. J. Heat Mass Transfer Vol. 40, 1907-1922 (1996). 26. C. H. Yu, M. Y. Chang and T. F. Lin, Structure of moving transverse and mixed rolls in mixed convection of air in a horizontal plane channel, Int. J. Heat Mass Transfer Vol.40, No.2, 333-346 (1997). 27. J. T. Lir, M. Y. Chang and T. F. Lin, Vortex flow patterns near critical state for onset of convection in air flow through a bottom heated horizontal flat duct, Int. J. Heat Mass Transfer Vol. 44, 705-719 (2001). 28. T. C. Cheng, J. T. Lir and T. F. Lin, Stationary transverse rolls and U-rolls in limiting low Reynolds number mixed convective air flow near the convective threshold in a horizontal flat duct, Int. J. Heat Mass Transfer, in press (2001) 29. R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, pp. 196-198. Academic Press, New York(1987). 30. S. J. Kline and F. A. McClintock, Describing uncertainties in single-sample experiments, Mechanical Engineering 75, 3-12 (1953). 31. J. L. Tuh, Experimental Study on the Mixed Convective Vortex Air Flow Structure Driven by a Heated Circular Plate Embedded in the Bottom of a Horizontal Flat Duct, Ph. D. thesis, Dept. Mech. Engineering, National Chiao Tung University, Hsinchu, Taiwan, expected in 2003.
|