|
1.A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources, 91 (2000) 37-50. 2.A. Burke, Int .J. Energ. “Ultracapacitor technologies and application in hybrid and electric vehicle” Res, 34 (2010) 133-151. 3.E. Frackowiak and F. Beguin, ”Carbon materials for the electrochemical storage of energy in capacitors”, Carbon N.Y, 39 (2001) 937-950. 4.A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors”, J. Power Sources, 157 (2006) 11-27. 5.E. Frackowiak, “Carbon materials for supercapacitor application”, Phys. Chem. Chem. Phys, 9 (2007) 1774-1785. 6.V. Subramanian, H. W. Zhu and B. Q. Wei, “Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials”, Electrochem. Commun., 8 (2006) 827-832. 7.E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F. Beguin, “Manganese dioxide core–shell nanowires in situ grown on carbon spheres for supercapacitor application”, J. Electrochem. Soc., 152 (2005) 229-235. 8.L.Feng, Y. Zhu, H. Ding, and C. Ni, “Recent progress in nickel baesd materials for high performance pseudocpapcitor electrodes”, J. Power Sources, 267 (2014) 430-444. 9.L. L. Zhang, and X. S. Zhao, “Carbon-based materials as supercapacitor electrodes”, Chem. Soc. Rev., 38 (2009) 2520-2531. 10.Y. Zhang, H. Faeng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review”, Int. J. Hydrogen Energy, 34 (2009) 4889-4899. 11.R. Kötz, and M. Carlen, “principles and applications of electrochemical capacitors”, Electrochim. Acta, 45 (2000) 2483-2498. 12.M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, “Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using activated carbon electrodes”, J. Electrochem. Soc., 148(8) (2001) A910-A914. 13.J. Huang, B. G. Sumpter, and V. Meunier, “A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes”, Chem. Eur. J., 14 (2008) 6614-6626. 14.Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review”, Int. J. Hydrogen Energy, 34 (2009) 4889-4899. 15.J. Q. Xiao, Q. Lu, and J. G. Chen, “Nanostructured electrodes for high-performance pseudocapacitors”, Angew. Chem. Int. Ed., 52 (2013) 1882-1889. 16.T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Next generation pseudocapacitor materials from sol-gel derived transition metal oxides”, J. Sol-Gel Sci. Technol., 57 (2011) 330-335. 17.V. Augustyn, P. Simon, and B. Dunn, “Pseudocapacitive oxide materials for high-rate electrochemical energy storage”, Energy Environ. Sci., 7 (2014) 1597-1614. 18.謝淵清,電化學反應程序,1983年5月。 19.F. Gobal, and M. Faraji, “Electrodeposited polyaniline on pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor”, J. Electroanal. Chem., 691 (2013) 51-56. 20.M. Toupin, T. Brousse, and D. Belanger, “Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor”, Chem. Mater., 16 (2004) 3184-3190.
|