| 
\item{Ackermann, J. (1980). Parameter space design of robust control systems. {\it IEEE Transactions on Automatic Control,}  {\it 25}(6),  1058-1072.} \item{Ackermann, J. (1993). {\it Robust control: Systems with uncertain physical parameters.}  London: Springer-Verlag.} \item{Barmish, B. R.  (1994) {\it New tools for robustness of linear systems.} New York: Macmillan.} \item{Besson, V., \& Shenton, A. T. (1997). Interactive control system design by a mixed $H\sp \infty$-parameter space method. {\it IEEE Transactions on Automatic Control,} {\it 42}(7), 946-955.} \item{Bhattacharyya, S. P., Chapellat, H., \& Keel, L. H. (1995). {\it Robust control, The parametric approach.} New Jersy: Prentice Hall PTR.} \item{ }{Bimbirekov, B. L. (1993). Determination of the parameters of a controller for a linear system from frequency criteria. {\it  Automation and Remote Control,} {\it 54}(5), part 1, 699-706.} \item{Boese, F. G. (1994). An auxiliary theorem for stability analysis in the presence of interval-valued parameters. {\it Multidimensional Systems and Signal Processing,} {\it 5}(4), 419-440.} \item{Bradshaw, A., \& Porter, B. (1974). Stabilizability of linear discrete-time dynamical systems with retarded control. {\it International Journal of Systems Science,} {\it 5}(2), 137-144.} \item{Chang, C. H., \& Han, K. W. (1990). Gain margins and phase margins for control systems with adjustable parameters. {\it Journal of Guidance, Control, and Dynamics,} {\it 13}(3), 404-408.} \item{Chen, J. J., \& Hwang, C. (1998). Value sets of polynomial families with coefficients depending nonlinearly on perturbed parameters. {\it IEE Proceedings-Control Theory and Applications,} {\it 145}(1), 73-82.} \item{Cheng, S. L., \& Hwang, C. (1999). On stabilization of time-delay unstable systems using PID controllers. {\it Journal of the Chinese Institute of Chemical Engineers,} {\it 30}(2), 123-140.} \item{Cook, R. P. (1966). Gain and phase boundary routine for two-loop feedback systems. {\it IEEE Transactions on Automatic Control,} {\it 11}(3), 573-577.} \item{Fam, A. T., \& Meditch, J. S. (1978). A canonical parameter space for linear systems design. {\it IEEE Transactions on Automatic Control,} {\it 23}(3), 454-458.} \item{Fil\'ts, R. V., Tymoshuk, V. V., \& Koziy, B. I. (1971). Calculation of $D$-partition boundary in the plane of two parameters that occur nonlinearly in the coefficients of the characteristic equation. {\it Soviet Automatic Control,} {\it 4}(2), 61-63.} \item{Fruchter, G., Srebro, U., \& Zeheb, E. (1987). On several variable zero sets and application to MIMO robust feedback stabilization. {\it IEEE Transactions on Circuits and Systems,} {\it 34}(10), 1208-1220.} \item{Fruchter, G., Srebro, U., \& Zeheb, E. (1991a). Conditions on the boundary of the zero set and application to stabilization of systems with uncertainty. {\it Journal of Mathematical Analysis and Applications,} {\it 161}(1), 148-175.} \item{Fruchter, G., Srebro, U., \& Zeheb, E. (1991b). On possibilities of utilizing various conditions to determine a zero set. {\it Journal of Mathematical Analysis and Applications,} {\it 161}(2), 361-366.} \item{Gantmacher, F. R. (1959). {\it The theory of matrices.} Vol. 2, New York: Chelsea Publishing Co.} \item{G\"uvenc, L., \&  Ackermann, J. (2001). Links between the parameter space and frequency domain methods of robust control. {\it International Journal of Robust and Nonlinear Control,} {\it 11}(15), 1435-1453.} \item{Han, K. W., \& Thaler, G. J. (1966). Control system analysis and design using a parameter space method. {\it IEEE Transactions on Automatic Control,} {\it 11}, 560-563.} \item{Hollot, C. V., Looze, D. P., \& Bartlett, A. C. (1990). Parametric uncertainty and unmodeled dynamics: Analysis via parameter space. {\it Automatica,} {\it 26}(2), 269-282.} \item{Hwang, C., \& Hsiao, C. Y. (2002). Solution of a non-convex optimization arising in PI/PID control design. {\it Automatica,} {\it 38}(11), 1895-1904.} \item{Kharitonov, V. L. (1979). Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. {\it Differential Equations,} {\it 14}(11), 1483-1485.} \item{Kiselev, O. N., Le, H. L., \& Polyak, B. T. (1997). Frequency responses under parametric uncertainty. {\it Automation and Remote Control,} {\it 58}(4), part 2, 645-661.} \item{Kogan, J. (1995). {\it Robust stability and convexity.} London: Springer-Verlag.} \item{Lanzkron, R. W., \& Higgins, T. J. (1959). $D$-decomposition analysis of automatic control systems. {\it IRE Transactions on Automatic Control,} {\it 4}(3), 150-171.} \item{Lawrenson, P. J., \& Bowes, S. R. (1969.) Generalization of $D$ decomposition techniques. {\it Proceedings of the Institution of Electrical Engineers,} {\it 116}, 1463-1470.} \item{McKay, J. (1970). The D-partition method applied to systems with dead time and distributed lag. {\it Measurement and Control,} {\it 3}(10), 293-294.} \item{Munro, N. (1999). {\it Symbolic methods in control system analysis and design.} IEE Control Engineering Series, 56. Institution of Electrical Engineers (IEE), London.} \item{Neimark, Yu. I. (1948a). On the determination of the values of the parameters for which a system of automatic regulation is stable. (in Russian)  {\it Avtomatika i Telemehanika,} {\it 9}, pp. 190-203.} \item{Neimark, Yu. I. (1948b). The structure of the $D$-decomposition of a space of polynomials and the diagrams of Vy\v snegradski\u\i and Nyquist. (in Russian) {\it Doklady Akad. Nauk SSSR (N.S.),} {\it  59}, 853-856.} \item{Neimark, Yu. I. (1948c). The structure of the $D$-decomposition of the space of quasipolynomials and the diagrams of Vy\v snegradski\u\i and Nyquist.( in Russian) {\it Doklady Akad. Nauk SSSR (N.S.),} {\it 60},   1503-1506.} \item{Neimark, Yu. I. (1949). $D$-decomposition of the space of quasipolynomials. (On the stability of linearized distributive systems). (in Russian) {\it Akad. Nauk SSSR. Prikl. Mat. Meh.,} {\it 13}, 349-380.} \item{Neimark, Ju. I. (1973). $D$-decomposition of the space of quasi-polynomials (on the stability of linearized distributive systems). American Mathematical Society Translations, Series 2. Vol. 102: Ten papers in analysis. American Mathematical Society, Providence, R.I., pp. 95-131.} \item{Neimark, Yu. I. (1991). Robust stability of linear systems. {\it Soviet Physics  Doklady,} {\it 36}(7), 506-509.} \item{Neimark, Yu. I. (1992a). Robust stability and D-partition. {\it Automation and Remote Control,} {\it 53}(7), part 1, 957-965.} \item{Neimark, Y. I. (1992b). Robust stability for periodic perturbations. {\it Automation and Remote Control,} {\it 53}(12), part 1, 1863-1865.} \item{ }{Neimark, Yu. I. (1992c). A measure of robust stability and modality of linear systems. {\it Soviet Physics  Doklady,} {\it 37}(7), 321-322.} \item{Neimark, Yu. I. (1992d). Robust stability region and robustness with respect to nonlinear parameters. {\it Soviet Physics  Doklady,} {\it 37}(7), 323-324.} \item{Neimark, Yu. I. (1992e). Robust stability with respect to nonlinear parameters. {\it Differential Equations,} {\it 28}(12), 1829-1831.} \item{Neimark, Y. I. (1993). Measures of robust stability of linear systems. {\it Automation and Remote Control,} {\it 54}(1), part 2, 100-103.} \item{ }{Neimark, Yu. I.  (1994a). Robust interval matrix stability. {\it Automation and Remote Control,} {\it 55}(7), part 2, 1037-1041.} \item{Neimark, Yu. I. (1994b). Robust modality and aperiodicity. {\it Journal of Computer and Systems Sciences,} {\it 32}(4), 102-107.} \item{Neimark, Yu. I. (1998). $D$-partition and robust stability. {\it Computational Mathematics and Modeling,} {\it 9}(2), 160-166.} \item{Nikolaev, Yu. P. (2000). Phase margin and the parameter space of continuous linear systems. {\it Automation and Remote Control,} {\it 61}(3), part 2, 451-462.} \item{Petrov, N. P. \& Polyak, B. T. (1991). Robust D-partition. {\it Automation and Remote Control,} {\it 52}(11), part 1, 1513-1523.} \item{Polyak, B. T., \& Kogan, J. (1995). Necessary and sufficient conditions for robust stability of linear systems with multiaffine uncertainty structure. {\it IEEE Transactions on Automatic Control,} {\it 40}(7), 1255-1260.} \item{Porter, B. (1968). {\it  Stability criteria for linear dynamical systems.} New York: Academic Press.} \item{Porter, B., \& Bradshaw, A. (1974). Effect of integral action on the  stabilizability of continuous-time linear dynamical systems with retarded control. {\it International Journal of Systems Science,} {\it 5}(9), 807-815.} \item{Putz, P., \& Wozny, M. J. (1987). A new computer graphics approach to parameter space design of control systems. {\it IEEE Transactions on  Automatic Control,} {\it 32}(4), 294-302.} \item{Siljak, D. D. (1969). {\it Nonlinear systems: The parameter analysis and design,} New York: Wiley.} \item{Siljak, D. D. (1989). Parameter space methods for robust control design: a guided tour. {\it IEEE Transactions on Automatic Control,} {\it 34}(7), 674-688.} \item{Spal, J. (1979). Generalization of the method of $D$-decomposition. {\it Kybernetika,} {\it 15}(6), 429-455.} \item{Stenton, A. T., \& Shafiel, Z. (1994). Relative stability for control systems with adjustable parameters. {\it Journal of Guidance, Control, and Dynamics,} {\it 17}(2), 304-310.} \item{Walach, E., \&  Zeheb, E. (1982). Generalized zero sets of multiparameter polynomials and feedback stabilization. {\it IEEE Transactions on Circuits and Systems,} {\it 29}(1), 15-23.} \item{Zeheb, E. (1990). Necessary and sufficient conditions for robust stability of a continuous system---the continuous dependency case illustrated via multilinear dependency. {\it IEEE Transactions on Circuits and Systems,} {\it 37}(1), 47-53.} \item{Zeheb, E. (1997). Zero sets analysis of systems with uncertainties. {\it Uncertainty: models and measures.} pp.  217-230, Math. Res., 99, Berlin: Akademie Verlag.} \item{Zeheb, E., \& Walach, E. (1981). Zero sets of multiparameter functions and stability of multidimensional systems. {\it IEEE Transactions on Acoustics, Speech and Signal Processing,} {\it 29}(2), 197-206.}
 
   |