跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖元賢
研究生(外文):Yuan-Hsien Liao
論文名稱:以變動座標描述次層流理論模型之應用
論文名稱(外文):Moving Coordinate System of Erosional Sublayer Flows
指導教授:戴義欽
指導教授(外文):Yih-Chin Tai
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:71
中文關鍵詞: 次層流 地形
外文關鍵詞:Sub-layer model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據水土保持手冊所定義,土石流乃為泥、砂、礫石等物質與水之混合體,在地質與地形條件影響之下,受重力作用及內部應力分布的轉變後所產生之流動體,流動於複雜的地形上。
本篇論文將會延伸對於Fraccarollo & Capart [2002] 的概念中,結合了通用座標系統(Unified coordinate System)之特性,建立一新的任意地型上包含侵蝕與堆積現象的次層流模型(Sub-layer model)。其上層是水,中間為水與固體砂石之混合流體,最下層為砂石所構成之底床。在次層流的流動過程中,將會有不斷的侵蝕與堆積現象在底床與混合流體間發生,在Fracarrolo & Capart [2002] 篇中,將此現象在於卡式座標中描述;在本篇論文中,將試著將此結果轉換至變動座標當中。隨著時間與底床的侵蝕堆積情形,底床隨著時間位置而不斷在改變,將變動座標 之 軸緊貼著此變動底床, 則是垂直於底床方向,本篇將試著在此座標下,透過深度積分得出質量、動量守恆與底床侵蝕率之形式。
再來本研究利用non-oscillation central (NOC)有限體積差分法,試著將此理論模型作一模擬。由於理論模型採用通用座標統達成座標隨著底床變動的特性,我們得以模擬探討水體潰壩的過程中,底床受到侵蝕堆積之情形。
According to the manual definition of conversation of water and soil, Landslides is the mixtures of such materials as mud, sand and water. Under the gravitational form and redistribution of internal stress states. Due to change of geological and topological coordinate, the materials are transported over complex topography.
We aim to extends the concept of Fracarrolo & Capart[2002] and combine the characteristic of Unified Coordinate System to establish a new Sub-layer model on general topography including corrosion and accumulation in this thesis. Its upper layer is water, the middle is mixed fluid of water and solid grit, and the bottom bed is formed by grit. In the course of flow of sub-layer flow there will be unceasing phenomena of corrosion and accumulation on the bottom bed and mixed fluid flow these phenomena are taken into account in a Cartesian Coordinates System in Fracarrolo & Capart [2002]. We try to reformulate the result into variable coordinates. The coordinate are chosen to coincide with the bottom bed, and they change along with the time due to corrosion and accumulation. The in variable coordinates sticks on the variable bottom bed, and is normal to the direction of the bottom bed. A set of depth integrated mass and momentum conservation laws are derived.
To investigate the key feature of this model we applied the non-oscillation central (NOC) finite volume scheme with respect to a dam-brake problem. The evolution of the corrosive/accumulative based surface is obtained, which were quantitatively compared with respect to different density ratio s, volume fraction as well as the thickness of the mixture layer .
中文摘要 I
Abstract II
目錄 III
圖目錄 V
第一章 緒論 1
1.1 前言與研究動機 1
1.2 文獻回顧 2
第二章 卡式座標下之理論建構 5
2.1 混合流在變動底床上之侵蝕與堆積行為 5
2.1.1 前言 5
2.1.2 相關假設 6
2.2 連續方程與動量方程 8
2.2.1 控制體之描述 8
2.2.2 質量守恆與動量守恆 9
2.2.3 質量守恆 10
2.2.4 動量方程 13
2.2.5 本節整理 14
2.3 不連續面的特性 15
2.4 本章節整理 18
2.5 剪應力之探討 20
第三章 理論導入變動座標系統 21
3.1前言 21
3.1.1地形座標與卡氏座標之間之關係 23
3.2 單層流(One-layer)之守恆方程 24
3.3 次層流流體(sub-layer)之質量與動量方程 26
3.3.1 守恆方程式與相關假設 26
3.3.2 邊界條件與不連續條件 27
3.5 深度積分 30
3.6 總結 33
第四章 數值模型之建立 35
4.1 數值方法(NOC scheme)介紹 35
第五章 結果討論 40
5.1.1 比重s之影響 44
5.1.2 比重對於侵蝕體積之影響 47
5.2 混合層初始厚度(hs)不同之比較 49
5.2.1 初始厚度為0 m 49
5.2.2 初始厚度為0.01 m 51
5.2.3 初始厚度為0.02 m 53
5.2.4 混合層厚度對於侵蝕之影響 54
5.2.4 在不同比重(s)下,初始厚度(hs)之比較 57
5.3混合層單位體積內的砂子體積比 不同之比較 63
5.3.1 砂子體積比 為0.5時之流況 63
5.3.2 砂子體積比 <0.5時之流況 64
5.3.3 砂子體積比 >0.5時之流況 66
5.3.4 本節整理 68
第六章 結論與建議 68
6.1 結論 68
6.2 建議 68
參考文獻 68
[1]Armanini, A., Fraccarollo, L., Guarino, L., Martino, R. & Bin, Y. (2000) Experimental analysis of the general features of uniform debris-flow over a loose bed. In G. F. Wieczorek & N. DNaeser (ed.), Proc. 2nd Intl. Conf. on Debris-Flow Hazards Mitigation, Taipei, Taiwan (August 2000), pp.
[2]Alcrudo, F., Garcia-Navarro, P. & Saviron, J. M. (1992) Flux di_erence splitting for 1D open channel flow equations. Intl Journal Numer-Meth. Fluids 14, 1009-1018.
[3]Bouchut, F., Westdickenberg M., (2004) “Gravity driven shallow water models for arbitrary topography.” Communication in Mathematical Sciences, 2, 359-389.
[4]Capart, H., Fraccarollo, L., Guarino, L., Armanini, A. & Zech, Y. (2000) Granular temperature behaviour of loose bed debris flows. In G. F. Wieczorek & N. D. Naeser (ed.), Proc. 2nd Intl Conf. on Debris-Flow Hazards Mitigation, Taipei, Taiwan (August 2000), pp. 361-368. Balkema.
[5]Capart & Young. D. L. (1998) Formation of a jump by the dam-break wave over a granular bed. Journal Fluid Mech. 372, 165-187.
[6]Egashira, S. Miyamoto, K. & Itoh, T. (1997). “Constitutive equations of debris flow & their applicability.” Proc. 1st int. Conf., Debris flow Hazards Mitigation, New York: ASCE, 340-349.
[7]Egashira, S Itoh, T. & Takeuchi, H. (2001). “Transition Mechanism of Debris Flows over Rigid Bed to over Erodible Bed.” Phys. Chem Earth (B),26(2), pp. 169-174.
[8]Egashira, S. (2007). “Review of Research Related to Sediment Disaster Mitigation.” Journal Desaster Research,2(1), pp. 11-18.
[9]Fennema, R. J. & Chaudhry, M. H. (1987) Simulation of one-dimensional dam-break flows. Journal Hydraul. Res.25, 41-51.
[10]Fraccarollo & Capart (2002) Riemann wave description of erosional dam-break flows. Journal Fluid Mechechanics , 461, 183-228.
[11]Fraccarollo, L. & Toro, E. F. (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. Journal of Hydraulic Resouces, 33, 843-864.
[12]Glaister, P. (1988) Approximate Riemann solutions of the shallow water equations. Journal of Hydraulic Resources, 26, 293-306.
[13]Gray, J. M. N. T., Tai, Y. C. & Noelle, S., (2003). Shock wave dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluid Mechanics, 491, 161 – 181.
[14]Iverson, R. M. & Denlinger, R. P., (2001). “Flow of variably fluidized granular masses across three-dimensional terrain. Part 1 Coulomb mixture theory.” Journal of Geophysical Research. 106 (B1), 537–552.
[15]Lambe, T. W. & Whitman, R. V. (1969) Soil Mechanics. Wiley.
[16]Luka I., Tai Y. C. & Kuo C. Y. (2009). “Non-Cartesian, topography based boundary layer equations and approximations of gravity driven flows of ideal and viscous fluids.” Math. Mod. Meth. Appl. Sci., (scheduled on issue 02(19) 2009)
[17]Nnadi, F. N. & Wilson, K. C. (1992) Motion of contact-load particles at high shear stress. Journal Hydraul. Engng 118, 1670-1684.
[18]Pitman, E. B. & Le, L. (2005). “A two-fluid model for avalanche and debris flows.” Phil. Trans. R. Soc. A, 363, 1573-1601.
[19]Pudasaini, S. P. & Hutter, K. (2003a). “Rapid shear flows of dry granular masses down curved and twisted channels.” Journal of Fluid Mechanics, 495, 193-208.
[20]Pudasaini, S. P., Wang, Y. & Hutter, K. (2005b). “Modeling debris flows down general channels.” Natural Hazads and Earth System Sciences, 5, 799-819.
[21]Pudasaini S. P., Shen L T, Tai Y C, Hsiau S-S & Hutter K.. (2006), “Motion of a Finite Mass of Granular Avalanche in a Cured and Twisted Channel: Experiment.” The 30th conference of Theoretical and Applied Mechanics, Changhua, Taiwan, R.O.C.,December,2006.
[22]Pudasaini S. P., Wang Y., SHeng L. T, Hsiau S.-S., Hutter K. & R. Katzenbach. (2008). “Avalanching granular flows down curved and twisted channels: Theroretical and experimental results.” Physics of Fluids, 20, 073302.
[23]Richardson J. F. & Zaki W. N. (1954) “Sedimentation and fluidization: part I.” Trans. Inst. Chem. Eng., 32, 35-53.
[24]Rericha E. C., Mark C. B., Shattuck D. & Swinney H. L.. (2002). Shocks in supersonic Sand. Physical Review Letters, 88(1), 014302.
[25]Savage, S. B. & Hutter, K.(1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechechanics, 199, 177-215.
[26]Savage, S. B. & Hutter, K. (1991). The dynamics of granular material from initiation to runout. Part I: Analysis. Acta. Mech., 86, 201-223.
[27]Toro, E. F. (1992) Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Phil. Trans. R. Soc. Lond. A 338, 43-68.
[28]Tai, Y.C., Wang, Y., Gary, J.M.N.T. & Hutter, K., (1999). Methods of similitudes in granular avalanche flows. K. Hutter et al. (eds.), Advances in Cold-Region Thermal Engineering and Sciences, 415 – 428. Springer Verlag.
[29]Tai, Y. C., Noelle, S., Gray, J.M.N.T. & Hutter, K., (2002). Shock-capturing and front tracking methods for granular avalanches. Journal of Computational Physics, 175(1), 269-301.
[30]Tai, Y. C., Noelle, S., Gray, J. M. N. T. (2005). “An Application of Non –oscillatory Central (NOC) Scheme to Shock Formation in Rapid Granular Flows.” The 6th Asian Computational fluid dynamics Conference, Taiwan, October 24~27, 2005.
[31]Tai Y. C. & Kuo C. Y. (2008a). “A New Model of Granular Flows over General Topography with Erosion and Deposition.” Acta Mechanica, 199, 71-96.
[32]Tai Y. C. & Kuo C. Y. (2008b), “ A three-dimensional model for one-phase geophysical mass flows over general and temporally variable topography.” Submitted to Phys. Fluids in Dec. 2008. (manuscript No. 08-1037).
[33]Tai Y. C. & Lin Y. C. (2008). “A focused view of the behavior of granular flows doen a confined inclined chute into horizontal run-out zone.” Physics of Fluids, 120(12).
[34]Takahashi, T. (1978). “Mechanical characteristics of debris flow.” Journal of Hydraulics Div., ASCE, 106, 1153-1169.
[35]Takahashi, T. (1980). “Debris flow on prismatic open channel.” Journal of Hydraulics Div., ASCE, 106, 381-396.
[36]Takahashi, T. (1981). “Debris flow.” Ann. Rev. Fluid Mech., 13, 57-77.
[37]Takahashi, T. (1991). “Debis flow.” In IAHR-AIRH Monograph Series A. Balkema, Rotterdam. 165 pp.
[38]Takahashi, T & Satofuka, Y. (2002). “Generalized theory of stony and turbulent muddy debris-flow and its practical model.” Journal of Japan Soc. Erosion control Eng, 55, 33-42.
[39]White, F. M. (1999) Fluid Mechanics. McGraw-Hill.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top