|
[1]Armanini, A., Fraccarollo, L., Guarino, L., Martino, R. & Bin, Y. (2000) Experimental analysis of the general features of uniform debris-flow over a loose bed. In G. F. Wieczorek & N. DNaeser (ed.), Proc. 2nd Intl. Conf. on Debris-Flow Hazards Mitigation, Taipei, Taiwan (August 2000), pp. [2]Alcrudo, F., Garcia-Navarro, P. & Saviron, J. M. (1992) Flux di_erence splitting for 1D open channel flow equations. Intl Journal Numer-Meth. Fluids 14, 1009-1018. [3]Bouchut, F., Westdickenberg M., (2004) “Gravity driven shallow water models for arbitrary topography.” Communication in Mathematical Sciences, 2, 359-389. [4]Capart, H., Fraccarollo, L., Guarino, L., Armanini, A. & Zech, Y. (2000) Granular temperature behaviour of loose bed debris flows. In G. F. Wieczorek & N. D. Naeser (ed.), Proc. 2nd Intl Conf. on Debris-Flow Hazards Mitigation, Taipei, Taiwan (August 2000), pp. 361-368. Balkema. [5]Capart & Young. D. L. (1998) Formation of a jump by the dam-break wave over a granular bed. Journal Fluid Mech. 372, 165-187. [6]Egashira, S. Miyamoto, K. & Itoh, T. (1997). “Constitutive equations of debris flow & their applicability.” Proc. 1st int. Conf., Debris flow Hazards Mitigation, New York: ASCE, 340-349. [7]Egashira, S Itoh, T. & Takeuchi, H. (2001). “Transition Mechanism of Debris Flows over Rigid Bed to over Erodible Bed.” Phys. Chem Earth (B),26(2), pp. 169-174. [8]Egashira, S. (2007). “Review of Research Related to Sediment Disaster Mitigation.” Journal Desaster Research,2(1), pp. 11-18. [9]Fennema, R. J. & Chaudhry, M. H. (1987) Simulation of one-dimensional dam-break flows. Journal Hydraul. Res.25, 41-51. [10]Fraccarollo & Capart (2002) Riemann wave description of erosional dam-break flows. Journal Fluid Mechechanics , 461, 183-228. [11]Fraccarollo, L. & Toro, E. F. (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. Journal of Hydraulic Resouces, 33, 843-864. [12]Glaister, P. (1988) Approximate Riemann solutions of the shallow water equations. Journal of Hydraulic Resources, 26, 293-306. [13]Gray, J. M. N. T., Tai, Y. C. & Noelle, S., (2003). Shock wave dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluid Mechanics, 491, 161 – 181. [14]Iverson, R. M. & Denlinger, R. P., (2001). “Flow of variably fluidized granular masses across three-dimensional terrain. Part 1 Coulomb mixture theory.” Journal of Geophysical Research. 106 (B1), 537–552. [15]Lambe, T. W. & Whitman, R. V. (1969) Soil Mechanics. Wiley. [16]Luka I., Tai Y. C. & Kuo C. Y. (2009). “Non-Cartesian, topography based boundary layer equations and approximations of gravity driven flows of ideal and viscous fluids.” Math. Mod. Meth. Appl. Sci., (scheduled on issue 02(19) 2009) [17]Nnadi, F. N. & Wilson, K. C. (1992) Motion of contact-load particles at high shear stress. Journal Hydraul. Engng 118, 1670-1684. [18]Pitman, E. B. & Le, L. (2005). “A two-fluid model for avalanche and debris flows.” Phil. Trans. R. Soc. A, 363, 1573-1601. [19]Pudasaini, S. P. & Hutter, K. (2003a). “Rapid shear flows of dry granular masses down curved and twisted channels.” Journal of Fluid Mechanics, 495, 193-208. [20]Pudasaini, S. P., Wang, Y. & Hutter, K. (2005b). “Modeling debris flows down general channels.” Natural Hazads and Earth System Sciences, 5, 799-819. [21]Pudasaini S. P., Shen L T, Tai Y C, Hsiau S-S & Hutter K.. (2006), “Motion of a Finite Mass of Granular Avalanche in a Cured and Twisted Channel: Experiment.” The 30th conference of Theoretical and Applied Mechanics, Changhua, Taiwan, R.O.C.,December,2006. [22]Pudasaini S. P., Wang Y., SHeng L. T, Hsiau S.-S., Hutter K. & R. Katzenbach. (2008). “Avalanching granular flows down curved and twisted channels: Theroretical and experimental results.” Physics of Fluids, 20, 073302. [23]Richardson J. F. & Zaki W. N. (1954) “Sedimentation and fluidization: part I.” Trans. Inst. Chem. Eng., 32, 35-53. [24]Rericha E. C., Mark C. B., Shattuck D. & Swinney H. L.. (2002). Shocks in supersonic Sand. Physical Review Letters, 88(1), 014302. [25]Savage, S. B. & Hutter, K.(1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechechanics, 199, 177-215. [26]Savage, S. B. & Hutter, K. (1991). The dynamics of granular material from initiation to runout. Part I: Analysis. Acta. Mech., 86, 201-223. [27]Toro, E. F. (1992) Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Phil. Trans. R. Soc. Lond. A 338, 43-68. [28]Tai, Y.C., Wang, Y., Gary, J.M.N.T. & Hutter, K., (1999). Methods of similitudes in granular avalanche flows. K. Hutter et al. (eds.), Advances in Cold-Region Thermal Engineering and Sciences, 415 – 428. Springer Verlag. [29]Tai, Y. C., Noelle, S., Gray, J.M.N.T. & Hutter, K., (2002). Shock-capturing and front tracking methods for granular avalanches. Journal of Computational Physics, 175(1), 269-301. [30]Tai, Y. C., Noelle, S., Gray, J. M. N. T. (2005). “An Application of Non –oscillatory Central (NOC) Scheme to Shock Formation in Rapid Granular Flows.” The 6th Asian Computational fluid dynamics Conference, Taiwan, October 24~27, 2005. [31]Tai Y. C. & Kuo C. Y. (2008a). “A New Model of Granular Flows over General Topography with Erosion and Deposition.” Acta Mechanica, 199, 71-96. [32]Tai Y. C. & Kuo C. Y. (2008b), “ A three-dimensional model for one-phase geophysical mass flows over general and temporally variable topography.” Submitted to Phys. Fluids in Dec. 2008. (manuscript No. 08-1037). [33]Tai Y. C. & Lin Y. C. (2008). “A focused view of the behavior of granular flows doen a confined inclined chute into horizontal run-out zone.” Physics of Fluids, 120(12). [34]Takahashi, T. (1978). “Mechanical characteristics of debris flow.” Journal of Hydraulics Div., ASCE, 106, 1153-1169. [35]Takahashi, T. (1980). “Debris flow on prismatic open channel.” Journal of Hydraulics Div., ASCE, 106, 381-396. [36]Takahashi, T. (1981). “Debris flow.” Ann. Rev. Fluid Mech., 13, 57-77. [37]Takahashi, T. (1991). “Debis flow.” In IAHR-AIRH Monograph Series A. Balkema, Rotterdam. 165 pp. [38]Takahashi, T & Satofuka, Y. (2002). “Generalized theory of stony and turbulent muddy debris-flow and its practical model.” Journal of Japan Soc. Erosion control Eng, 55, 33-42. [39]White, F. M. (1999) Fluid Mechanics. McGraw-Hill.
|