跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王聖智
論文名稱:氫氧化鉀活化酚醛樹脂以製備高孔隙碳材料
論文名稱(外文):Preparation of High Porosity Carbons from Phenol-Formaldehyde Resins with KOH Activation
指導教授:鄧熙聖
指導教授(外文):Hsisheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:103
中文關鍵詞:活性碳酚醛樹脂化學活化物理活化孔隙氧化處理
外文關鍵詞:porous carbonphenol-formaldehyde resinchemical activationphysical activationporosityoxidation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用酚醛樹脂為初始原料,利用化學活化和物理活化來製備高孔隙的碳材料。化學活化的過程是先將樹脂浸漬於KOH溶液中活化,而後在N2的環境下,於碳化溫度500-900℃,停留0-3小時。物理活化是先將樹脂碳化後,接著在900℃下於CO2中進行活化,到達不同的burn-off程度。兩種活化方式所製得的活性碳,其表面積皆可高達2000 m2/g以上,及孔體積大於1.0 cm3/g。化學活化的部分主要是探討不同碳化時間、碳化溫度、化學劑比例(KOH/resin)和加熱速率下,其對於活性碳產率及表面特性的影響。以物理活化製得的活性碳,孔隙度隨著burn-off程度的增加而增加,孔徑分佈以微孔為主。在相似的孔隙發展程度,物理活化所得到的產率較化學活化來得低。從SEM圖中,以CO2活化的樹脂,產品外觀比KOH活化,其有較緊密的表面外觀。
本研究也探討以KOH活化酚醛樹脂,在不同製備條件下,氧化處理造成的效應。實驗結果顯示,在碳化前,於120℃進行氧化理,其中氧化的步驟在樹脂浸漬KOH前或後,皆可提高活性碳產率。然而在樹脂未浸漬KOH前,施以氧化處理,卻會限制孔隙的發展。當氧化處理在樹脂浸漬於KOH活化後,高化學劑比例下,此時氧化處理有助於孔隙的發展,但在較低化學劑比例時,氧化處理是會降低孔隙的發展。就碳化時間和碳化溫度而言,氧化處理似乎沒有明顯的影響。
關鍵字:活性碳、酚醛樹脂、化學活化、物理活化、孔隙、氧化處理
Porous carbons with high porosities were prepared from phenol-formaldehyde resins with chemical and physical activation methods. The resin precursor employed was synthesized with an initial formaldehyde to phenol ratio of 1.33 by mole. The chemical activation process consisted of KOH impregnation followed by carbonization in nitrogen at 500-900℃ for 0-3 hours, whereas the physical activation was performed by carbonizing the resins at 900℃followed by gasifying the char in CO2 to different extents of burn-off. Both the activation methods can produce carbons with surface areas and pore volumes higher than 2000 m2/g and 1.0 cm3/g, respectively. The influence of different parameters during chemical activation, such as carbonization temperature and time, KOH/resin ratio and heating rate, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommend. In physical activation the resulting carbons are mainly microporous and their porosity is an increasing function of the burn-off level. At similar porosity levels the carbon yield during physical during physical activation was found to be lower than that in the chemical activation. An SEM study shows that the carbons produced from CO2 activation have a more compact surface than those from KOH activation.
The influence of oxidation on the production of high porosity carbons from phenol-formaldehyde resins with KOH activation were examined under various preparation conditions. The activation process principally consisted of KOH impregnation followed by carbonization. Experimental results showed that prior to carbonization treating the resins with oxygen at 120℃, either before of after KOH impregnation, was able to enhance the yield of the carbon products. The porosity development was found to be hindered by conducting oxidation prior to the impregnation. For oxidation performed after the impregnation, at a low KOH/resin ratio the porosity was found to decrease upon oxidation, whereas the oxidation enhanced porosity development for activation performed at higher ratios. Varying the carbonization temperature and time did not show obvious influence on the effects of the oxidation.
總 目 錄
中文摘要I
英文摘要II
誌謝IV
總目錄V
表目錄IX
圖目錄X
第1章 前言1
1-1 活性碳的特性1
1-2 活性碳的製造3
1-2-1 碳化4
1-2-2 物理活化6
1-2-3 化學活化7
1.3 活性碳的應用9
第2章 理論說明14
2-1 化學活化14
2-2 物理活化15
2-3 氧化處理16
2-4 吸附基本理論17
2-4-1 物理吸附17
2-4-2 化學吸附18
2-4-3 離子吸附19
2-5 氣體吸附原理與分析20
2-5-1 等溫吸附曲線20
2-5-2 Langmuir 等溫吸附方程式22
2-5-3 BET 等溫吸附模式23
2-5-4 DR、D-P與D-A 等溫吸附模式27
2-5-5 t-plot31
2-5-6 N2與CO2作為吸附氣體的相異性32
第3章 實驗方法38
3-1 實驗設備38
3-1-1 反應實驗氣體及分析用氣體38
3-1-2 實驗藥品39
3-1-3 實驗用儀器39
3-2 實驗步驟42
3-2-1 碳樣品的製備42
3-2-2 化學活化酚醛樹脂44
3-2-3 物理活化酚醛樹脂45
3-2-4 前氧化處理46
3-2-5 試樣及產品特性的分析47
第4章 結果與討論58
4-1 化學活化58
4-1-1 碳化溫度的影響58
4-1-2 化學劑比例(KOH/resin)的影響61
4.1-3 碳化時間與升溫速率的影響62
4-2 物理活化酚醛樹脂-不同burn-off的探討63
4-3 氧化處理的效應64
4-3-1 氧化條件的影響64
4-3-2 碳化時間在氧化處理後的影響66
4-3-3 碳化溫度在氧化處理後的影響67
4-3-4 化學劑比例(KOH/resin)在氧化處理後的影響70
4-4 KOH活化的機構71
4-4-1 碳化程序的探討71
4-4-2 反應機構的探討72
4-5 活化碳外觀的比較73
第五章 結論90
參考文獻92
附錄1. 以氫氧化鉀活化的酚醛樹脂,經氧化處理後,碳化時間對其產品表面特性的影響97
附錄2. 以氫氧化鉀活化的酚醛樹脂,經氧化處理後,碳化溫度對其產品表面特性造成的影響(化學劑比例:4)98
附錄 3. 以氫氧化鉀活的酚醛樹,經氧化處理後,碳化對其產品表面特性所造成的影響99
附錄4. 經氧化處理(120℃下通氧3小時)之酚醛樹脂,以CO2行物理活化,其不同活化程度對產品表面性質的影響100
附錄5. 經氧化處理(200℃下通氧3小時)之酚醛樹脂,以CO2進行物理活化,其不同活化程度對產品表面性質的影響101
附錄6. 以KOH活化酚醛樹脂,在不同化學劑比例(KOH/resin)下的N2等溫吸附曲線圖(碳化溫度:700℃,碳化時間:2hr,升溫速率:30℃/min)102
附錄7. 以KOH活化酚醛樹脂,在不同碳化時間下(KOH/resin)下的N2等溫吸附曲線圖(碳化溫度:700℃,化學劑比例:4,升溫速率:30℃/min)103
表目錄
表1-1 曾經被研究過的活性碳原料11
表2-1 物理與化學吸附的區分表27
表3-1 酚醛樹脂之元素與成份分析41
表4-1 以氫氧化鉀活化酚醛樹脂,其碳化溫度對產品表面性質的影響75
表4-2 以氫氧化鉀活化酚醛樹脂,其化學劑比例對產品表面性質的影響76
表4-3 以氫氧化鉀活化酚醛樹脂,其碳化時間和升溫速率對產品表面性質的影響77
表4-4 以二氧化碳活化酚醛樹脂,其不同活化程度對產品表面性質的影響78
表4-5 以氫氧化鉀活化酚醛樹脂,其氧化條件造成的效應79
表4-6 以氫氧化鉀活化的酚醛樹脂,在氧化處理後,化學劑比例對其產品表面特性所造成的影響80
圖目錄
圖1-1 活性碳粒子內不同形式的孔徑分布情形12
圖1-2 高分子物質碳化過程中分子結構的一般變化13
圖2-1 等溫吸附曲線的六種型態36
圖2-2 典型的t-plot示意圖37
圖3-1 鋼管與高溫爐設備圖53
圖3-2 氣體浮子流量計校正實驗示意圖54
圖3-3 TGA圖55
圖3-4 酚醛樹脂合成反應圖56
圖3-5 酚醛樹脂的合成裝置圖57
圖4-1. 以KOH活化酚醛樹脂,在不同碳化溫度下的N2等溫吸附曲線圖(碳化時間:2小時,化學劑比例:2,升溫速率:30℃/min)81
圖4-2 在900℃下以二氧化碳物理活化酚醛樹脂,不同活化程度的N2等溫吸附曲線圖82
圖4-3 不同氧化溫度下,對活性碳產率和表面特性的影響(樹脂先浸漬於化學劑比例為4的KOH溶液活化,再行氧化處理;氧化後的樣品於700℃下碳化2小時)83
圖4-4 在氧化或無氧化處理下,碳化時間對於活性碳產率和表面特性的影響(碳化溫度為700℃,化學比例為4;氧化處理:樹脂先浸漬於化學劑比例為4的KOH溶液活化,再於120℃下氧化)84
圖4-5 在氧化或無氧化處理下,碳化溫度對於活性碳產率和表面特性的影響(碳化溫度2小時,化學劑比例為4;氧化處理:樹脂先浸漬於先浸漬於化學比例為4的KOH溶液活化,再於120℃下氧化)85
圖4-6 在氧化或無氧化處理下,碳化溫度對於活性碳產率和表面特性的影響(碳化溫度2小時,化學劑比例為2;氧化處理:樹脂先浸漬於先浸漬於化學劑比例為2的KOH溶液活化,再於120℃下氧化)86
圖4-7 以KOH活化酚醛樹脂,在不同化學比例(KOH/resin)下的熱裂解分析圖:(a) 化學劑比例=4,(b) 化學劑比例=1,(C) 化學劑比例=087
圖4-8 KOH與酚醛樹脂間的反應機構88
圖4-9 活性碳SEM照片(a) 以KOH活化,在碳化溫度700℃,碳化時間2小時,所製得的活性碳;(b) 以KOH活化,在碳化溫度900℃,碳化時間2小時,所製得的活性碳;(c) 在900℃下以CO2物理活化,所製得的活性碳89
參考文獻
Ahmadpour, A.; Do, D.D. The Preparation of Active Carbons from Coal by Chemical and Physical Activation. Carbon 34, 471, 1996.
Ahmadpour, A.; Do, D. D. The Preparation of Active Carbon from Macadamia Nutshell by Chemical Activation. Carbon 35, 1723, 1997.
Ahmadpour, A.; King, B. A.; Do, D. D. Comparison of Equilibria and Kinetics of High Surface Area Activated Carbon Produced from Different Precursors and by Different Chemical Treatments. Ind. Eng. Chem. Res. 37, 1329, 1998.
Alvarez, T.; Fuertes, A. B.; Pis, J. J.; Parra, J. B.; Pajares, J.; Menendez, R. Influence of Coal Oxidation on the Structure of Char. Fuel 73, 1358, 1994.
Amaraskera, G.; Scarlett, M. J.; Mainwaring, D. E. Development of Microporosity in Carbons Derived from Alkali Digested Coal. Carbon 36, 1071, 1998.
Caturla, F.; Molina-Sabio, M.; Rodrfguez-Reinoso, F. Preparation of Activated Carbon by Chemical Activation with ZnCl2. Carbon 29, 999, 1991.
Ehrburger, P.; Addoun, A.; Addoun, F.; Donnet, J.-B. Carbonization of Coals in the Presence of Alkaline Hydroxides and Carbonated: Formation of Activated Carbons. Fuel 65, 1447, 1986.
Evans, M. J. B.; Halliop, E.; MacDonald, J. A. F. The Production of Chemically-Activated Carbon. Carbon 37, 269, 1999.
Greenbank, M.; Spotts, S. Six Criteria for Coal-based Carobns. Water Technol 16, 56, 1993.
Gregg, S. J.; Sing, K. S. W. Adsorption, Surface and Porosity; Academic Press: London, 1982.
Hall, C. R.; Holmes, R. J. The preparation and properties of some Activated Carbons Modified by Treatment with Phosgene or Chlorine. Carbon 30, 173, 1992.
Hassler, J. W. Purification with Activated Carbon: Industrial Commercial Evironmental; Chemical Publishing Co. Inc.: New York, 1974.
Hu Z, Vanstant EF. Carbon 33, 1293, 1995.
Ibarra, J. V.; Moliner, R.; Palacios. J. M. Catalytic Effects of Zinc Chloride in the Pyrolysis of Spanish High Sulphur Coals. Fuel 70, 727, 1991.
Illan-Gomez, M.J.; Garcia-Garcia, C.; Salinas-Martinez de Lecea, C.; Linares-Solano, A. Activated Caerbons from Spanish Coal. 2. Chemical Activation. Energy Fuels 10, 1108, 1996.
Jagtoyen M, Thwaites M, Stencel J, McEananey B, Derbyshire F. Carbon 30, 1089, 1992.
Laine, J.; Yunes, S. Effect of Preparation Method on the Pore Size Distribution of Activated Carbon From Coconut Shell. Carbon 30, 601, 1992.
Leboda R, Skubiszewska-Zieba J, Gregorczyk W. Carbon 36, 417, 1998.
Liu X, Osaka T. All-solid-state Electric Double-layer Capacitors with Various Polymer Gel Electrolyte. J. Eelectrochem Soc 143, 3982, 1996.
Liu X, Osaka T. Properties of Electric Double-layer Capacitors with Various Polymer Gel Electrolytes. J. Electrochem Soc 144, 3066, 1997.
Lowell, S.; Shields, J. E. Power Surface area and Porosity, 3rd ed.; Chapman & Hall: London, 1991.
Miller, J.M.; Dunn, B.; Tran, T.D.; Pekala, R. W. Deposition of Ruthenium Nanoparticales on Carbon Aerogels for High Energy Density Supercapacitor Electrodes. J. Electrochem Soc 144, L309, 1997.
Munoz-Guillena, M. J.; Illan-Gomez, M. J.; Martin-Martinez, J. M.; Linares-Solano, A.; Salinas-Martinez deLecea, C. Activated Carbon from Spanish Coal. 1. Two-Stage CO2 Activation. Energy Fuels 6, 9, 1992.
Qiao, Wenming.; Ling, Licheng.; Zha, Qingfang.; Liu, Lang. Preparation of a pitch-based activated carbon with a high spcific surface area. J. of Materials Science 32, 4447, 1997.
Rodriguez-Reinoso, F.; Molina-Sabio, M.; Gonzalez, M. T. Carbon 33, 15, 1995.
Rodriguez-Reinoso F. In: Marsh H, Heintz EA, Rodriguez-reinoso F, editors. Introduction to Carbon Technologies, Chapter 2, Alicante, Spain: University of Alicante, p. 35, 1997.
Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. High Surface Area Caron Aderogels for Supercapacitors. J. Non-Cryst Solids 225, 81, 1998.
Suuberg, E. M. Mass Transfer Effects in Pyrolysis of Coal: A Review of Experimental Evidence and Models. In Chemistry of Coal Conversion; Schlosberg, R. H.; Ed.; Plenum Press: New York, 1985; Chapter 4, pp 67-119.
Suuberg, E.M.; Wojtowicz, M.; Calo, J.M.; 22nd Symposium (International) on Combustion, Pittsburgh: The Combustion Insitute, p. 79, 1988.
Subberg, E. M.; Wojtowicz, M.; Calo, J. M. Some Aspects of the Thermal Annealing Process in a Phenol-Formaldehyde Resin Char. Carbon 27, 431, 1989.
Teng, H.; Serio, M. A.; Wojtowicz, M. A.; Bassilakis, R.; Solomon, P. R. Reprocessing of used Tires into Activated Carbon and Other Products. Ind. Eng. Chme. Res. 34, 3102, 1995.
Teng, H.; Ho, J.-A.; Hsu, Y.-F.; Hsieh, C.-T. Preparation of Activated Carbons from Bituminous Coals with CO2 Activation-1. Effect of Oxygen Content in Raw Coals. Ind. Eng. Chem. Res. 35, 4043, 1996.
Teng, H.; Lin, H.-C. Comparison of Surface Properties of Carbons Gasified in Nitrous Oxide and in Oxygen. Carbon 35, 1811, 1997.
Teng, H.; Ho, J.-A.; Hsu, Y.-F. Preparation of Activated Carbons form
Bituminous Coals with CO2 Activation-Influence of Coal Oxidation. Carbon 35, 275, 1997.
Teng, H.; Lin, H.-C. Activated Carbon Production from Low Ash Subbituminous Coal with CO2 Activation. AICHE J. 44, 1170, 1998.
Teng, H.; Yeh, T.-S.; Hsu, L.-Y. Preparation of Activated Carbon from Bituminous Coals with Phosphoric Acid Activation. Carbon 36, 1387, 1998.
Teng, H.; Yeh, T.-S.; Preparation of Activated Carbons from Bituminous Coals with Zinc Chloride Activation. Ind Eng Chem Res 37, 58, 1998.
Verheyen, V.; Rathbone, R.; Jagtoyen, M.; Derbyshire, F. Activated Extrudated by Oxidation and KOH Activation of Bituminous Coal. Carbon 33, 763, 1995.
Walker, P. L.; Jr.; Almagro, A. Activation of Pre-chlorinated Anthracite in Carbon Dioxide and Steam. Carbon 33, 239, 1995.
Wigmans, T. Industrial Aspects of Production and Use of Activated Carbon. Carbon 27, 13, 1989.
Yamashita, Y.; Ouchi, K. Influence of Alkali on the Carbonization Process-I Carbonization of 3,5-Dimethylphenol-Formaldehyde Resin with NaOH. Carbon 20, 41, 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top