跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 07:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊慶
研究生(外文):Carlos Li
論文名稱:靜電紡絲法製作鈮酸鈉鉀(KNN)奈米線與PFM特性分析
論文名稱(外文):Fabrication Potassium Sodium Niobate Nanowires by Electrospinning Technique and Their Characterization by Piezoelectric Force Microscopy
指導教授:駱榮富
指導教授(外文):Rong Fuh Louh
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料與製造工程所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:161
中文關鍵詞:靜電紡絲技術鈮酸鈉鉀壓電陶瓷壓電響應力顯微鏡
外文關鍵詞:potassium sodium niobate (KNN)nanowiresnanofiberspiezoleectric ceramicselectrospinning processpiezoelectric force microscopy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:507
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用靜電紡絲技術製作鈮酸鈉鉀(KxNa1-xNbO3;KNN)奈米線,然而影響靜電紡絲主要三種因素,包括黏度、表面張力及庫倫力,其中吾人改變聚乙烯醇(PVA)濃度及分子量探討黏度對靜電紡絲之影響並藉由KNN電紡絲混合溶液流量控制奈米線尺寸範圍,且本實驗又利用外加電場強度的改變及不同電紡絲針孔規格改善KNN奈米線黏結問題,然而吾人進一步增加前驅物(KNN)濃度使得鈮酸鈉鉀奈米線分佈較均勻,再以不同熱處理溫度及持溫時間降低鈮酸鹽它相之析出。
首先吾人將鈮酸鈉鉀前驅液與聚乙烯醇(PVA)高分子溶液均勻混合,以靜電紡絲技術牽引出所需之電紡絲成品,接著利用熱重分析儀(TGA)觀察電紡絲高分子及有機物質熱裂解之溫度,並使用SEM、EDS及XRD觀察KNN奈米線表面形貌與確認其為鈣鈦礦結構,吾人將最適化參數所製備出KNN奈米線進行壓電力顯微鏡(PFM)分析,由量測數值顯示KNN奈米線壓電性質優於其他壓電材料,故鈮酸鈉鉀奈米線適用於開發可撓性壓電材料。
The goal of this study is to investigate the fabrication potassium sodium niobate (KxNa1-xNbO3,KNN) nanowires and nanofibers by electrospinning process (ESP) and the characterization of KNN nanowires by piezoelectric force microscopy (PFM). There are a number of key parameters involved in electrospinning process such as viscosity and surface tension of precursor solution as well as the Coulombic force during the electrospinning. The effect of molecular weight and concentration of polyvinyl alcohol (PVA) on viscosity and electrospinning performance was analyzed. The size distribution of KNN nanowires and entanglement of KNN nanofibers were adjusted by the flow rate of PVA solution, needle specifications, and applied electrical field. Furthermore, the increased concentration of KNN precursor solution achieved an even uniform size distribution of KNN nanowires, of which the precipitation of niobate salts was avoided under various post-heat treatment conditions.
The precursor solution, a mixture of KNN chemical precursors and PVA polymeric solution, was transformed into the form of KNN nanowires via ESP process. The electrospun samples were tested under thermal gravimetric analyzer (TGA) to identify its on-set temperature for thermal decomposition. Both crystalline phase and microstructure of acquired KNN nanowires and nanofibers were analyzed by SEM/EDS and XRD. The piezoelectric properties of KNN products, which were manufactured by optimized process conditions, were examined by a PFM. The electrospun KNN nanowires and nanofibers were successfully obtained with much outstanding piezoleectric quality, as compared to equivalent materials made y other methods and are qualified to be a candidate material for the development of flexible electronic devices in the near future.
摘 要 i
ABSTRACT ii
表 目 錄 xii
第一章緒論 1
1.1 壓電陶瓷材料之簡介 1
1.2 無鉛壓電陶瓷發展及介紹 4
1.3 靜電紡絲技術介紹及應用 5
1.4 軟性電子產業應用及發展 9
1.5 研究動機及方向 15
第二章理論基礎與文獻回顧 20
2.1 靜電紡絲之理論與研究 20
2.1.1 靜電紡絲之研究 20
2.1.2 臨界電位理論(Theory of Critical Value) 25
2.1.3 靜電紡絲之射流剖面 26
2.1.4 靜電紡絲之不穩定性射流 26
2.1.5 影響靜電紡絲基本參數 27
2.1.6 合成無機靜電紡絲 39
2.2 材料系統簡介 41
2.2.1 鈮酸鉀(KNbO3,KN) 41
2.2.2 鈮酸鈉(NaNbO3,NN) 45
2.2.3 鈮酸鉀鈉((Na1- xK x)NbO3,KNN) 47
2.2.4 鈮酸鋰(LiNbO3;LN) 51
2.2.5 鎢青銅結構(tungsten bronze,TB) 52
2.2.6 鈦酸鋇BaTiO3 (簡稱BT)系 53
2.2.7 鈦酸鉍鈉(Bi0.5Na0.5TiO3;BNT)系 54
2.3 壓電陶瓷的重要電氣特性 54
2.3.1 機電耦合因子(k) 54
2.3.2 介電損失因子 55
2.3.3 機械品質因子(Qm) 57
2.3.4 頻率常數(N) 58
2.3.5 壓電應變常數(d) 58
2.4 元素摻雜相關因素 61
2.4.1 置換原理 61
2.4.2 容忍因子 61
第三章 實驗步驟與方法 63
3.1 實驗藥品之物化性質 63
3.2 負極收集器製作及試片準備 64
3.2.1 試片清洗及製作 64
3.2.2 負極收集器之製作 65
3.3 利用靜電紡絲技術製作鈮酸鈉鉀(KNN)奈米線 66
3.3.1 鈮酸鈉鉀(KNN)前驅液之製備 66
3.3.2 製備聚乙烯醇(PVA)溶液 66
3.3.3 低分子量PVA溶液添加量對靜電紡絲KNN奈米線之影響 68
3.3.4 不同高分子量PVA濃度對靜電紡絲KNN奈米線之影響 70
3.3.5 熱處理條件對靜電紡絲KNN奈米線之影響 71
3.3.6 溶液流量對靜電紡絲KNN奈米線之影響 73
3.3.7 針頭規格對靜電紡絲KNN奈米線之影響 74
3.3.8 工作電壓對靜電紡絲KNN奈米線之影響 75
3.3.9 工作距離對靜電紡絲KNN奈米線之影響 75
3.3.10 鈮酸鈉鉀濃度對靜電紡絲KNN奈米線之影響 76
3.4分析儀器及設備簡介 77
3.4.1 圓錐-平板式黏度計 77
3.4.2 冷場發射掃描式電子顯微鏡(FE-SEM) 78
3.4.3 多弁貆光繞射儀(HRXRD) 79
3.4.4 高解析多弁鈺蓬y式探針顯微鏡 80
3.4.5 原子力顯微鏡之壓電響應力特性分析 81
3.4.6 熱重分析儀(TGA) 87
3.4.7 傅立葉轉換紅外光譜儀( Fourier Transform Infrared Spectroscopy;FTIR) 88
第四章結果與討論 90
4.1 低分子量PVA添加量對靜電紡絲KNN奈米線之影響 90
4.2 不同高分子量PVA濃度對靜電紡絲KNN奈米線之影響 96
4.3 不同熱處理條件靜電紡絲KNN奈米線之影響 102
4.4 溶液流量對靜電紡絲KNN奈米線之影響 112
4.5 針頭規格對於靜電紡絲製備KNN奈米線之影響 115
4.6 工作電壓對靜電紡絲KNN奈米線之影響 124
4.7 工作距離對於靜電紡絲製備KNN奈米線之影響 129
4.8 鈮酸鈉鉀濃度對靜電紡絲KNN奈米線之影響 133
4.9 鈮酸鈉鉀(KNN)奈米線之PFM特性分析 137
4.10 未來研究方向 143
第五章 結 論 147
參考文獻 150
參考文獻
[1]W. G. Hankel, Abh. Sächs, 12 (1881) 547
[2]W. G. Hankel, Ber Sächs, 33 (1881) 52
[3]Bernar d Jaffe, William. R. Cook, Hans Jaffe, “Piezoelectric Ceramics,”Nature(1971)336
[4]蕭俊誠 “PMN-PZ-PT三元系壓電陶瓷MPB相介電性之研究”,清華大學博士論文,(1993) 75-80。
[5]尹耀邦編著“奈米時代”,五南圖書出版公司 (2002) 20-36
[6]汪建民博士編著,陶瓷技術手冊(上),王華科技圖書股份有限公司出版 (1994) 273-277。
[7]Q. Xu, X. L. Chen, W. Chen, M. Chen, S. L. Xu, B. H. Kim, and J. H. Lee, "Effect of MnO addition on structure and electrical properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 ceramics prepared by citrate method," Materials Science and Engineering B, 130 (2006) 94-100.
[8]S. Wu, Q. Xu, X. Zhao, T. Liu, and Y. Li, "Processing and properties
of CeO2-doped ferroelectric (Na0.5Bi0.5)0.94Ba0.06TiO3," Materials Letters, 60 (2006) 1453-1458.
[9]T. Takenaka and H. Nagata, "Current status and prospects of lead-free piezoelectric ceramics," Journal of the European Ceramic Soc., 25 (2005) 2693-2700.
[10]Y. Yuan, S. Zhang, X. Zhou, and J. Liu, “Phase transition and temperature dependences of electrical properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics,” Japanese Journal of Applied Physics, 45 (2006) 831-834.
[11]Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, and R. Xu, “Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3 ceramics,” Materials Science and Engineering B, 112 (2004) 5-9.
[12]X. X. Wang, S. H. Choy, X. G. Tang, and H. L. W. Chan, “Dielectricbehavior and microstructure of (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3 -BaTiO3 lead-free piezoelectric ceramics,” Journal of Applied Physics, 97 (2005) 1-4.
[13]M. Kimura, A. Ando, T. Sawada, and K. Hayashi,“Piezoelectric ceramic composition and piezoelectric ceramic device using the same” U.S. Pat., 6258291 (2001).
[14]T. Takenaka, M. Hirose, and K. Miyabe, “Piezoelectric ceramic composition”U.S. Pat., 6004474 (1999).
[15]T. Takenaka, “Dielectric ceramic composition”U.S. Pat., 5637542, (1997).
[16]Murata Manufacturing Co., Ltd., Japan Pat., 56778 (2006).
[17]TDK, “Piezoelectric Ceramic Compsition”Japan Pat., 2942535, (2005).
[18]Taiyo Yuden, “Ceramic Capacitor And Production Thereof”Japan Pat., 75449 (2004).
[19]E. Cross, “Lead-free at Last,” Nature, 432 (2004) 24-25.
[20]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free Piezoceramics,” Nature, 432 (2004) 84-87.
[21]T. Takenaka , H. Nagata, and Y. Hiruma,“Current Developments and Prospective of Lead-Free Piezoelectric Ceramics.” Japanese Journal of Applied Physics, 47(5) (2008) 3787-3801.
[22]S. J. Zhang , C. A. Randall, and T. R. Shrout,“High Curie Temperature Piezocrystals in the BiScO3-PbTiO3 Perovskite System”Appl. Phys. Lett. 83 (2003) 3150-3152.
[23]R. E. Jaeger and L. Egerton, “Hot Pressing of Potassium-Sodium Niobates,”J. Am. Ceram. Soc., 45 (1962) 209-213.
[24]D. A. Saville, “Stability of Electrically Charged Viscous Cylinders,”Phys Fluids, 14 (1971) 1095~1099.
[25]Doshi, J & Reneker, D.H.,“Electrospinning Process and Application of Electrospum Fiber,” J. of Electrostat., 35 (1995) 151-155.
[26]Jacobsen M, “The Nonwovens Industry Meets The Filtration Business,”Nonwovens Industry May, (1991) 36-41.
[27]洪崇豪,以電紡絲製備彈性奈米SBS纖維膜,國立成奶j學化學工程系碩士論文 (2004)。
[28]林坤賢,以電紡絲製備聚苯纖維,國立成奶j學化學工程學系,碩士論文(2005)。
[29]D. H. Reneker, I. Chun, “Nanometer Diameter Fibres of Polymer Produced by Electrospinning”, Nanotechnology, 7 (1996), 216-220。
[30]M. Vert , S. Li , H. Garreau, “New Insights on The Degradation of Bioresorbable Polymeric Devices based on Lactic and Glycolic Acids”, Clin Mater., 10 (1992) 3-8.
[31]V. Chemie, “Lactic acid: Properties and Chemistry of Lactic Acid and Derivatives” V. Chemie, (1971) 221-231.
[32]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber
membranes”, Polymer, 43 (2002) 4403-4410.
[33]Reneker D.H, Fong H., “Polymer Nonofibe: Divison of Polymer Chemistry,”Inc. American Chemical Society, 15(2003) 44-48.
[34]沈煜棠 “軟性感測器的發展與應用” 軟性電子技術專題,工業材料雜誌, 287 (2010) 93-101.
[35]李振良“紡織軟性電子之應用”高差異化之軟性電子技術專題,工業材料雜誌, 292 (2011) 117-127.
[36]左涵雯,“歐盟科研架構計畫下之智慧型紡織技術趨勢”,紡織速報,196 (2009) 29-36.
[37]李俊輝、沈乾龍,“生理監視紡織品研究與發展現況”,紡織速報,165 (2009) 29-32.
[38]李振良,『電熱紡織品之技術發展趨勢』,紡織速報,177 (2008) 29-32.
[39]唐建發,『高警示紡織品之發展趨勢』,紡織速報,210 (2008) 51-54.
[40]汪建民博士編著,陶瓷技術手冊(上),王華科技圖書股份有限公司出版 (1994) 282-284.
[41]Y.S. Sung, H.M. Lee, W. Du, H.G. Yeo, S.C. Lee, J.H. Cho, T.K. Song, and M.H. Kim, “Enhanced piezoelectric properties of (Bi0.5K0.5+xLiy)TiO3 ceramics by K nonstoichiometry and Li addition”Applied Physics Letters, 94 (2009) 062901.
[42]Lang Wua, Dingquan Xiaoa, Jiagang Wua, Yong Suna, Dunmin Lina, Jianguo Zhua, Ping Yua.“Lead-free piezoelectric (K,Na)NbO3,” J. Euro. Ceramic Soc., 15 (2008) 2963-2968.
[43]Li Wang, Ruzhong Zuo, Longdong Liu, Hailin Su, Min Shi, Xiangcheng Chu, Xiaohui Wang, Longtu Li, “Preparation and characterization of sol–gel derived (Li,Ta,Sb) modified (K,Na)NbO3 lead-free ferroelectric thin films,” Materials Chemistry and Physics, 130 (2011) 165– 169.
[44]Xin Yan, Wei Ren, Xiaoqing Wu, Peng Shi, Y. Xi, “Lead-free (K, Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties,” J. Alloys and Compounds, 508 (2010) 129–132.
[45]Yuan Zhou, Min Guo, Ci Zhang, Mei Zhang, “Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic,” Ceramics International, 35 (2009) 3253–3258.
[46]Jin Soo Kim , Hai Joon Lee , Sun Young Lee , Ill Won Kim ,Su Dae Lee, “Frequency and temperature dependence of dielectric and electrical properties of radio-frequency sputtered lead-free K0.48Na0.52NbO3 thin films,” Thin Solid Films, 518 (2010) 6390–6393
[47]C.R. Cho, “c-Axis oriented (Na,K)NbO3 thin films on Si substrates using metalorganic chemical vapor deposition,” Mater. Lett., 57 (2002) 781–783.
[48]M. Abazari, E.K. Akdogan, A. Safari, “Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates,”J. Appl. Phys., 103 (2008) 104106.
[49]N. Liu, K. Wang, J.F. Li, and Z. Liu, “Hydrothermal Synthesis and Spark Plasma Sintering of (K,Na)NbO3 Lead-Free Piezoceramics,” J. Am. Ceram. Soc., 92 (2009) 1884–1887.
[50]N. Li, W.L. Li, S.Q. Zhang, W.D. Fei, “Effect of post-annealing treatment in oxygen on dielectric properties of K0.5Na0.5NbO3 thin films prepared by chemical solution deposition,” Thin Solid Films, (2011) 5070-5073.
[51]Li Zhengfa , Li Yongxiang , Zhai Jiwei, “Grain growth and piezoelectric property of KNN-based lead-free ceramics,” Current Applied Physics, 23 (2011) 1-12.
[52]Hitomi Mukaibo, Lloyd P. Horne, Dooho Park and Charles R. Martin ,“Controlling the Length of Conical Pores Etched in Ion-Tracked Poly(ethylene terephthalate) Membranes,”General nanotechnology, 5 (2009) 2343-2479.
[53]Gilbert, W. De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure “On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth,”London, Peter Short, 14 (1882) 184-186.
[54]X. Lord Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity,” London, Edinburgh, and Dublin Phil. Mag. 44 (1882) 184-188.
[55]J.F Cooley, “Apparatus for Electrically Dispersing Fluids”U.S. Patent 692,631 (1902).
[56]J. Zeleny, “The Electrical Discharge from Liquid Points, and A Hydrostatic Method of Measuring the Electric Intensity at their Surfaces,” Physical Review, 3 (1914) 69-91.
[57]Anton Formhals ,“Process and apparatus for preparing artificial threads”US Patent 1,975,504 (1934).
[58]G. I. Taylor, “Disintegration of water drops in an electric field,”Proc. R. Soc. London, Ser., A280 (1964) 383-397.
[59]A. Theron, E. Zussman, A. L. Yarin, “Electrostatics field-assisted alignment of electrospun nanofibres,”Nanotechnology, 12 (2001) 384。
[60]J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, “Electrospinning of collagen nanofibers,”Biomacromolecules, 3 (2002) 232-236。
[61]Z. -M. Huang, Y. –Z. Zhang, M. Kotaki, S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,”Compos. Sci. Technol., 63 (2003) 2223-2227。
[62]D. Li, Y. Wang, Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays,”Nano Letters, 3 (2003) 1167-1170。
[63]P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase,“Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wirev Drum Collector”, Nanoletters, 4 (2004) 2215-2218.
[64]朱維政,“連續式多孔靜電紡絲設備及其靜電紡絲模組”中華民國專利I314594 (2009).
[65]Thomas B., and Scotty L. “Apparatus and method for reducing solvent loss for electro-spinning of fine fibers”US Patent .7,815,427.
[66]Jianjun Miao, Minoru Miyauchi, Trevor J. Simmons, Jonathan S. Dordick, and Robert J. Linhardt, “Electrospinning of Nanomaterials and Applications in Electronic Components and Devices,” Journal of Nanoscience and Nanotechnology, 10 (2010) 5507-5519.
[67]morphology of PZT nanofibers fabricated by electrospinning,” Mater. Lett., 59 (2005) 3085–3089.
[68]S.Y. Xu, Y. Shi, S.G. Kim, “1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers,” Nanotechnology, 17 (2006) 4497–4501.
[69]M. Hossain, A. Kim, “The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning” Mater. Lett., 63 (2009) 789–792.
[70]M. Liao, X.L. Zhong, J.B. Wang, S.H. Xie, Y.C. Zhou, “Structure and electrical properties of Bi3.15Nd0.85Ti3O12 nanofibers synthesized by electrospinning and sol-gel method ”Appl. Phys. Lett., 96 (2010) 012904.
[71]Y.Q. Chen, X.J. Zheng, X. Feng, “The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning”Nanotechnology, 21 (2010) 055708.
[72]Y.Q. Chen, X.J. Zheng, S.X. Mao, W. Li, J. “Nanoscale mechanical behavior of vanadium doped ZnO piezoelectric nanofiber by nanoindentation technique ”Appl. Phys., 107 (2010) 094302.
[73]Avinash Baji , Yiu-Wing Mai, Qian Li, Yun Liu,“Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy” Composites Science and Technology, 71 (2011) 1435-1440.
[74]吳大誠、杜仲良、高緒珊編著, “奈米纖維” (2004) 66-71.
[75]H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40 (1999) 4585.
[76]H. Liu, Y. L. Hsieh, “Ultrafine fibros cellulose membranes from electrospinning of cellulose acetate,” J. Polym. Sci., Part: B Polym. Phys., 40 (2001) 2119-2122.
[77]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes”, Polymer, 43 (2002) 4403-4407.
[78]K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers”, Polymer, 44 (2003) 4029-4033.
[79]K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, “Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends”, J. Polym. Sci., Part:B, Polym. Phys. 41 (2003) 1256-1261.
[80]D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning” Nano Letters, 3 (2003) 555-560.
[81]J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles”, Polymer, 42 (2001) 261-266.
[82]D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bendinginstability of electrospinning of nanofibers,” J. Appl. Phys., 87 (2000) 4531-4537.
[83]T. Lin, H. Wang, H. Wang, X. Wang, “The charge effect of cationic surfactants on the elimination of fiber beads in the electrospinning of polystyrene,” Nanotechnology, 15 (2004) 1375-1380.
[84]A. Koski, K. Yim, S. Shivkumar, “Effect of molecular weight onfibrous PVA produced by electrospinning”, Materials Letters, 58 (2004) 493-501.
[85]C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, “Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process,”, Macromolecules ,37 (2004) 573-577.
[86]S. Koombhongse, W. Liu, D.H. Reneker, “Flat polymer ribbons and other shapes by electrospinning,” J. Polym. Sci.,Part:B, Polym. Phys., 39 (2001) 2598-2603.
[87]M. Bognitzki, W.Czado, T. Frese, A. Schapor, M. Hellwig, M.Steinhart, A. Greiner, J. H. Wendorff, “Nanostructured fibers viaelectrospinning,” Adv. Mater., 13 (2001) 70-76.
[88]S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro- andnanostructured surface morphology on electrospun polymer fibers,” Macromolecules, 35 (2002) 8456-8461.
[89]L. Wannatong, A. Sirivat, P. Supaphol, “Effects of solvents onelectrospun polymeric fibers: preliminary study on polystyrene,” Polym. Int., 53 (2004) 1851-1857.
[90]P. K. Baumgartyen, “Electrostatic spinning of acrylic microfibers,” Colloid Interface Sci., 36 (1971) 71-76.
[91]M. Cloupeau, B. Prunet-Foch, “Electrostatic spraying of liquids incone-jet mode,” J. Electrostatics, 22 (1989) 135-141.
[92]C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer, 40 (1999) 7397-7401.
[93]K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, “Influence of a mixing solvent with tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats,” J. Polym. Sci. , Part : B, Polym. Phys., 40 (2002) 2259-2264.
[94]A.F. Lotus, Y.C. Kang, J.I. Walker, R.D. Ramsier, G.G. Chase,“Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning,” Mater. Sci. and Engr. B, 166 (2010) 61–66.
[95]A.F. Lotus, R.K. Feaver, L.A. Britton, E.T. Bender, D.A. Perhay, N. Stojilovic , R.D. Ramsier, G.G. Chase,“Characterization of TiO2–Al2O3 composite fibers formed by electrospinning a sol–gel and polymer mixture,” Mater. Sci. and Engr. B, 167 (2010) 55–59.
[96]Seok Joo Doh, Cham Kim, Se Geun Lee, Sung Jun Lee, Hoyoung Kim, “Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants,” J. of Hazardous Materials, 154 (2008) 118–127.
[97]Yanxia Liu, Hongliang Zhang, Xiuyun An, Caitian Gao, Zhenxing Zhang, Jinyuan Zhou, Ming Zhou, Erqing Xie “Effect of Al doping on the visible photoluminescence of ZnO nanofibers” J. of Alloys and Compounds, 506 (2010) 772-776.
[98]A.M. Bazargan, S.M.A. Fateminia, M. Esmaeilpour Ganji, M.A. Bahrevar,“Electrospinning preparation and characterization of cadmium oxide nanofibers”, Chem. Engineering Journal, 155 (2009) 523–527.
[99]Jerawut Kaewsaenee , Pinpan Visal-athaphand , Pitt Supaphol , Varong Pavarajarn, “Fabrication and characterization of neat and aluminium-doped titanium (IV) oxide fibers prepared by combined sol–gel and electrospinning techniques,” Ceramics International, 36 (2010) 2055–2061.
[100]Zhiyao Hou, Lili Wang , Hongzhou Lian , Ruitao Chai , Cuimiao Zhang , Ziyong Cheng, Jun Lin, “Preparation and luminescence properties of Ce3+ and / or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning,” J. of Solid State Chemistry, 182 (2009) 698–708.
[101]Qingchun Liu, Bin Li, Jian Gong, Yongling Sun, Wenlian Li, “Preparation and luminescent properties of one-dimensional [Ru(Bphen)2dppz]Cl2/PVP composite fibers by electrospinning,” J. of Alloys and Compounds, 466 (2008) 314–318.
[102]P. Viswanathamurthi, N. Bhattarai, C.K. Kim, H.Y. Kim, D.R. Lee,“Ruthenium doped TiO2 fibers by electrospinning” Inorganic Chemistry Communications 7 (2004) 679–682.
[103]Minggang Zhao, Xinchang Wang, Lingling Ning, Hao He, Jianfeng Jia , Liwei Zhang, Xinjian Li, “Synthesis and optical properties of Mg-doped ZnO nanofibers prepared by electrospinning,” J. of Alloys and Compounds, 507 (2010) 97–100.
[104]G. Shirane, R. Newnham, and R. Pepinsky, “Dielectric Properties and Phase Transitions of NaNbO3 and (Na,K)NbO3,” Physical Review, 96(3) (1954) 581.
[105]T. Takenaka , H. Nagata, and Y. Hiruma, “Current Developments and Prospective of Lead-Free Piezoelectric Ceramics,” 47(5) (2008) 3787-3801.
[106]A. Reisman, and F. Holtzberg, “Phase Equilibria in the K2CO3-Nb2O5 by the Method of Differential Thermal Analysis,” J. Am. Chem. Soc, 43 (1955) 2115-2119.
[107]B. Jaffe, and H. Jaffe, “Piezoelectric ceramics,”Academic Press, New York, 22 (1971) 573-579.
[108]M. Ahtee and A. M. Glazer, “Lead-free piezoelectric ceramics: K2O-Na2O-Nb2O5.”Theor. Gen. Crystallogr, 11 (1976) 173-177.
[109]H. D. Megaw, “Seven Phases of Sodium Niobate.”Ferroelectrics, 7 (1974) 87-89.
[110]L. Egerton and D. M. Dillon, “Lead-free piezoelectric ceramics: K2O-Na2O-Nb2O5,” J. Am. Ceram. Soc, 15 (1959) 438-442.
[111]曾瑞德,“摻雜鋰與銀對鈮酸鉀鈉系統電性之影響”,國立台灣科技大學碩士論文 (2010).
[112]李品賢, “正方鎢青銅結構之化合物K2EuxFe1-x+yNb5-0.6yO15的合成及其磁電特性.”成奶j學材料科學及工程學系 (2009).
[113]G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainic, “New ferroelectric of complex composition,” Sov. Phys. Solid State, 2 (1961) 2651-2656.
[114]B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London and New York, 23 (1971) 7-9.
[115]吳朗,電子陶瓷-壓電,全欣科技圖書,(1994) 79-81.
[116]O.M.R., Roy, “The Major Ternary Structural Families,”Springer-
Verlag, Berlin, 37 (1974) 135-137.
[117]A. Bhattacharya, P. Ray,“Studies on Surface Tension of Poly(Vinyl Alcohol): Effect of Concentration, Temperature, and Addition of Chaotropic Agents,” J. Appl. Polym. Sci., 93 (2004) 122–130.
[118]朱孔軍,“水熱法合成(K, Na)NbO3無鉛壓電陶瓷及其性能測試,” Journal of Inorganic Materials, 25 (2010)1159-1163.
[119]Ching-Hsiang Chang, Min-Han Yang, Tsung-Ying Ke, Hsin-Tien Chiu and Chi-Young Lee, “Local Piezoelectric Characterization of Alkaline Niobate 1-Dimensional Nanostructures Measured by Piezoresponse Force Microscope,” 31 (2011)169-173.
[120]網路資料: www.AsylumResearch.com, info@AsylumResearch.com.
Roger Prokach,Asylum Research and Sergei Kalinin,“Piezoresponse Force Microscopy with Asylum Research AFMs,”Atomic Force Microscopes.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top