|
1. Wild, S., et al., Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes care, 2004. 27(5): p. 1047-1053. 2. Singh, N., D.G. Armstrong, and B.A. Lipsky, Preventing foot ulcers in patients with diabetes. Jama, 2005. 293(2): p. 217-228. 3. Lavery, L.A., et al., Variation in the incidence and proportion of diabetes-related amputations in minorities. Diabetes care, 1996. 19(1): p. 48-52. 4. Driver, V.R., et al., The costs of diabetic foot: the economic case for the limb salvage team. Journal of vascular surgery, 2010. 52(3): p. 17S-22S. 5. Veves, A., et al., The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study. Diabetologia, 1992. 35(7): p. 660-663. 6. Dickstein, R., et al., Foot-ground pressure pattern of standing hemiplegic patients major characteristics and patterns of improvement. Physical Therapy, 1984. 64(1): p. 19-23. 7. Soames, R., Foot pressure patterns during gait. Journal of biomedical engineering, 1985. 7(2): p. 120-126. 8. Cavanagh, P.R. and M.M. Rodgers, Pressure distribution under symptom-free feet during barefoot standing. Foot &; Ankle International, 1987. 7(5): p. 262-278. 9. Chen, W.-P., F.-T. Tang, and C.-W. Ju, Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis. Clinical Biomechanics, 2001. 16(7): p. 614-620. 10. Zou, D., M.J. Mueller, and D.J. Lott, Effect of peak pressure and pressure gradient on subsurface shear stresses in the neuropathic foot. Journal of biomechanics, 2007. 40(4): p. 883-890. 11. Chu, Z., P. Sarro, and S. Middelhoek, Silicon three-axial tactile sensor. Sensors and Actuators A: Physical, 1996. 54(1): p. 505-510. 12. Hwang, E.-S., J.-H. Seo, and Y.-J. Kim. A polymer-based flexible tactile sensor for normal and shear load detection. in Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on. 2006. IEEE. 13. Kim, K., et al. 3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology. in Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on. 2006. IEEE. 14. Cheng, M.-Y., et al., A polymer-based capacitive sensing array for normal and shear force measurement. Sensors, 2010. 10(11): p. 10211-10225. 15. Peters, W. and W. Ranson, Digital imaging techniques in experimental stress analysis. Optical Engineering, 1982. 21(3): p. 213427-213427-. 16. Bruck, H., et al., Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, 1989. 29(3): p. 261-267. 17. Luo, P., et al., Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Experimental Mechanics, 1993. 33(2): p. 123-132. 18. Tay, C.J., et al., Digital image correlation for whole field out-of-plane displacement measurement using a single camera. Optics Communications, 2005. 251(1): p. 23-36. 19. Li, E., A. Tieu, and W. Yuen, Application of digital image correlation technique to dynamic measurement of the velocity field in the deformation zone in cold rolling. Optics and Lasers in Engineering, 2003. 39(4): p. 479-488. 20. Pan, B., et al., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement science and technology, 2009. 20(6): p. 062001. 21. Tung, S.-H. and M.-H. Shih, Precision verification of a simplified three-dimensional DIC method. Optics and Lasers in Engineering, 2011. 49(7): p. 937-945. 22. 陳智偉, 三軸感測器研究. 2014. 23. Rivlin, R., Large elastic deformations, in Collected Papers of RS Rivlin. 1997, Springer. p. 318-351. 24. Huang, L., P.S. Chua, and A. Asundi, Least-squares calibration method for fringe projection profilometry considering camera lens distortion. Applied optics, 2010. 49(9): p. 1539-1548.
|