跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/21 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾岳儒
研究生(外文):Yueh-Ru Chung
論文名稱:交聯劑結構對PVA/GO阻隔膜性能影響之研究
論文名稱(外文):The effect of crosslinker structure on barrier performance of PVA/GO nanocomposite film
指導教授:賴君義賴君義引用關係胡蒨傑
指導教授(外文):Juin-Yih LaiChien-Chieh Hu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:109
中文關鍵詞:阻隔薄膜;交聯;氧化石墨稀;聚乙烯醇
外文關鍵詞:Barrier performance;cross-linking;graphene oxide;polyvinyl alcohol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:745
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在日新月異科技發展進程中,阻隔技術越來越受到重視,不論食品、藥品或電子產業中的有機材料或金屬元件接觸到水氣與氧氣時皆會腐敗、變質與衰退,因此具保護作用阻隔膜之開發益顯重要。
本研究在氧化石墨烯(GO)/聚乙烯醇( PVA )奈米複合膜中導入交聯劑,經由交聯反應使GO與PVA架接產生不透的交聯結構,此交聯結構可抑制水蒸氣對阻隔膜之膨潤,進而達到阻隔效能之提升。研究中分別針對交聯劑種類、交聯劑濃度與交聯時間之變化進行探討,從中了解交聯度與交聯劑結構對阻隔膜阻隔效能的影響。簡單具量產可行性之溶液塗佈法被用於製備PVA/GO/Crosslinker透明奈米複合阻隔模。
ATR-FTIR、XPS、膨潤度、XRD、熱分析、透光度與水氣/氧氣透過儀等一系列量測被用於鑑定阻隔膜,發現在操作環境為37oC與70 RH%,交聯度、PVA結晶度與交聯劑分子大小為影響薄膜阻隔效能的主要因素,官能基數與交聯劑添加量增高雖有助於提高交聯程度,然而卻會抑制薄膜結晶,且較大立體障礙的交聯劑結構則使薄膜緻密度下降,因此三者的交互作用決定薄膜阻隔效能。就交聯劑種類而言可得知丙三羧酸具有最高交聯程度,與未交聯阻隔模相較阻隔效能改進約27.7%;固定丙三羧酸改變添加濃度,添加量10 mol%可將阻隔效能提升至33.3%,最後改變交聯時間,當交聯時間提高至20 hr時,交聯反應趨於完全,使得阻隔效能提升至54.3%。
在PET基板上形成交聯薄膜並於37°C與0 RH%環境下進行氧氣透過測試。交聯程度雖可影響薄膜阻氣性,然而在實驗結果中發現薄膜的結晶性質主導著薄膜阻氣能力,在高交聯情況下容易破壞薄膜之結晶性,反而導致薄膜阻氣效果下降,對阻氣而言需保持薄膜之結晶性與部分交聯結構。相較於未交聯薄膜,添加5 mol%的丙三羧酸交聯時間12小時之交聯薄膜最高可提升阻氣效能約68.5%。


Developing a high-performance barrier films attract more attention due to rapid increase of use in food packaging, pharmaceutical, electrical devices, organic materials and metal components. In this study, we fabricated a graphene oxide (GO)/polyvinyl alcohol (PVA) nanocomposite membrane with different cross-linker by solution coating to obtain high water vapor and oxygen barrier film. The role of cross-linker is to provide more stable for final membrane product. Therefore, we studied the effect of cross-linker structure, concentration and cross-linking time on the water vapor barrier performance.
ATR-FTIR、XPS、degree of swelling, XRD, thermal Analysis, UV-visible and MOCON data were used to identify the degree of crosslinking, transparency, oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) of the barrier nanocomposite membranes. The results of crosslinker structure, degree of crosslinking and degree of crystallinity will be the major parameters which affect barrier performance of the films at the operating environment is 37。C and 70 RH%. More functional groups and high concentration can increase degree of crosslinking but decrease the degree of crystallinity. Crosslinker with high steric hindrance structure makes the film density decrease. Therefore, the three interactions affect the barrier performance. Using the crosslinker of Tricarballylic acid can obtain the highest degree of crosslinking for crosslinked film and it improve the barrier performance about 27.7%. Crosslinker content for 10 mol% improve the barrier performance about 33.3%. And then increase the crosslinking time to 20 hr. It can improve the barrier performance about 54.3% because it have enough reaction time. So that the crosslinking reaction tends to more completely.
Oxygen transmission for crosslinked films on PET substrate are tested at the 37 ° C and 0 RH%. In the study, the crystalline properties of the film dominates the film’s gas barrier properties even if the degree of crosslinking also affect gas barrier properties. High degree of crosslinking decrease the degree of crystallinity, lead to the gas barrier properties decrease. Films maintain the crystalline and partially crosslinked structure which can improve the gas barrier properties. Compared to non-crosslinked film, gas barrier performance increase about 68.5% for the membrane added 5 mol % of tricarballylic acid and crosslinked for 12 hours.


摘要 I
ABSTRACT III
致謝 V
目錄 IX
圖目錄 XII
第一章
Figure 1-1. The requirement of barrier properties for various applications 2
Figure 1-2. The ideal structure of graphene. 7
Figure 1-3. Methods of mass production of graphene 7
Figure 1-4. The three steps of preparing graphene oxide GO from graphite. 8
Figure 1-5. Mechanism of chemical reduction for GO by hydrazine 8
Figure 1-6. Graphene lattice structur. 9
Figure1-7. Schematic illustrations of polymer/clay nanocomposite materials 12
Figure 1-8. Regular arrangement of horizontally staked graphene layers in a parallel array perpendicular to the diffusion direction. 16
Figure 1-9. Effect of aspect ratio of graphene layers on the barrier performance of nanocomposite. 17
Figure 1-10. Comparison between the experimental data and the results predicted by (a) Neilsen Model and (b) Cussler Model of the nanocomposite films containing GONSs. 17
Figure 1-11. Effect of sheet orientation on the relative permeability in exfoliated nanocomposites at Φs = 0.05 and W = 1 nm. The illustrations show the definition of the direction of preferred orientation (n) of the silicate sheet normals (p) with respect to the film plane. Illustrations for three values of the order parameter (S) -1/2, 0, and 1 are also shown. 22
Figure 1-12. The mechanism of barrier perfoemance improving for PVA / GO nanocomposite film. 29


第二章
Figure 2-1. The scheme of membrane preparation by solution casting method. 36
Figure 2-2. The chemical structure of crosslinkers . 36
Figure 2-3. The schematic diagram of XPS. 38
Figure 2-4. Schematic diagram of the conditions necessary for diffraction. 39
Figure 2-5. X-ray diffraction and Bragg''s Law. 40
Figure 2-6. Mocon OX-TRAN 2/21 for oxygen transmission rate test. 43
Figure 2-7. Schematic of MOCON PERMATRAN-W Model 3/61 44
Figure 2-8. The framework for the study. 45
第三章
Figure 3-1. ATR-FTIR spectra of Graphite and GO 48
Figure 3-2. XPS spectra of graphite and GO. 49
Figure 3-3. C1 s XPS spectra of GO. 50
Figure 3-4.The weight loss of Graphite and Graphene oxide. (Nitrogen atmosphere, heating rate = 10°C /min) 51
Figure 3-5. WAXD patterns for Graphite and Graphene oxide. 52
Figure 3-6. ATR-FTIR spectra of the PVA, PVA/GO-0.1 film. 54
Figure 3-7. XRD patterns of PVA and PVA/GO film 54
Figure 3-8. The images for (a) PVA and (b) PVA/GO-0.1 film. 56
Figure 3-9. ATR-FTIR spectra of the PVA/GO-0.1wt% and crosslinked films. (crosslinker content = 11.5 mol% , crosslinking time = 12 h) 58
Figure 3-10. C 1s XPS spectra of crosslinked films as a function of crosslinker types (a) Oxalic (b) Malonic (c) Malic (d) Citric (e) Tricarballylic 61
Figure 3-11. The effect of crosslinker type on the Tg of the PVA/GO/crosslinker films 63
Figure 3-12. XRD patterns for PVA/GO-0.1 and the crosslinked films. (Crosslinker content = 11.5 mol %, crosslinking time = 12 h) 64
Figure 3-13. The effect of different crosslinkers on the WVTR of the crosslinked films. (crosslinker content = 11.5 mol% , crosslinking time = 12 h) 66
Figure 3-14. The effect of different crosslinkers on the OTR of the crosslinked films. (crosslinker content = 11.5 mol% , crosslinking time = 12 h) 66
Figure 3-15. The trasmittance at 550 nm for crosslinked films as a function of crosslinker types. (crosslinker content = 11.5 mol% , crosslinking time = 12 h) 67
Figure 3-16. The image for films crosslinked with different crosslinkers (a) PVA/GO-0.1 (b) Oxalic (c) Malonic (d) Malic (e) Citric (f) Tricarballylic acid. (crosslinker content = 11.5 mol% , crosslinking time = 12 h) 68
Figure 3-17. ATR-FTIR spectra for crosslinked films with different crosslinker content. 70
Figure 3-18. Normalized O-C=O/C-H ratio as a function of crosslinker content. (crosslinker = Tricarballylic acid, crosslinking time = 12 h) 70
Figure 3-19. C 1s XPS spectra of crosslinked films with different crosslinker content. (a) 5 (b) 10 (c) 11.5 (d) 15 (e) 20 mol% 72
Figure 3-20. The effect of crosslinker content on the swelling degree of crosslinked films. (crosslinker = Tricarballylic acid, crosslinking time = 12 h) 74
Figure 3-21. XRD patterns of crosslinked films with different crosslinker content. (crosslinker = Tricarballylic acid, crosslinking time = 12 h) 74
Figure 3-22. The effect of crosslinker content on the WVTR of the crosslinked films. (crosslinker = Tricarballylic acid, crosslinking time = 12 h) 76
Figure 3-23. The effect of crosslinker content on the OTR of the crosslinked films. (crosslinker = Tricarballylic acid, crosslinking time = 12 h) 76
Figure 3-24. The trasmittance at 550 nm for crosslinked films as a function of crosslinker content 77
Figure 3-25. The effect of crosslinker content on transparency of crosslinked films (a) 5 (b) 10 (c) 11.5 (d) 15 (e) 20 mol%. (crosslinker = Tricarballylic acid, crosslinking time = 12 h) 78
Figure 3-26. ATR-FTIR spectra for films crosslinkedat different crosslinking time. (crosslinker = Tricarballylic acid, crosslinker content = 10 mol%) 80
Figure 3-27. Normalized O-C=O/C-H ratio as a function of crosslinking time. (crosslinker = Tricarballylic acid, crosslinker content = 10 mol%) 80
Figure 3-28. C 1s XPS spectra of crosslinked films as a function of crosslinking time (a) 4 (b) 8 (c) 12 (d) 16 (e) 20 h 82
Figure 3-29. The effect of crosslinking time on the swelling degree of the crosslinked films. (crosslinker = Tricarballylic acid, crosslinker content = 10 mol%) 84
Figure 3-30. XRD patterns for films crosslinked at different crosslinking time . (crosslinker = Tricarballylic acid, crosslinker content = 10 mol%) 84
Figure 3-31. The effect of crosslinking time on the WVTR of the crosslinked films. (crosslinker = Tricarballylic acid, crosslinker content = 10 mol%) 86
Figure 3-32. The effect of crosslinking time on the OTR of the crosslinked films. (crosslinker = Tricarballylic acid, crosslinker content = 10 mol%) 86
Figure 3-33. The trasmittance at 550 nm for crosslinked films as a function of crosslinking time.(crosslinker =Tricarballylic acid, crosslinker content=10 mol%) 87
Figure 3-34. The image of films crosslinked at (a) 4 (b) 8 (c) 12 (d) 16 (e) 20 h. (crosslinker type = Tricarballylic acid, crosslinker content = 10 mol%) 88

表目錄 XV
第一章
Table 1-1. Minimum property requirements of a polymer substrate for flexible displays 3
Table 1-2. The kinetic diameter of gas molecule. 10
Table 1-3. The kinetic diameter of liquid molecule. 10
Table 1-4. The technology for barrier film preparation 19

第三章
Table 3-1. Atomic composition of graphite and graphite oxide. 49
Table 3-2. Composition of the chemical groups of GO. 50
Table 3-3. Thermal Analysis results of PVA and PVA/GO film 55
Table 3-4. Degree of swelling and barrier performance of PVA and PVA/GO film. 55
Table 3-5. The transmittance of PVA and PVA/GO film. 56
Table 3-6. Variation modes and band frequencies in PVA and crosslinked PVA/GO films. 59
Table 3-7. The atomic percentages of crosslinked films as a function of crosslinker types. 62
Table 3-8. The atomic percentages of crosslinked films as a function of crosslinker content 72
Table 3-9. The atomic percentages of crosslinked films as a function of crosslinking time 82

第一章 緒論 1
1-1發展中的新技術:薄膜 1
1-2阻隔膜 1
1-3聚乙烯醇 4
1-4 石墨烯(GRAPHENE) 5
1-4-1 石墨烯衍生物 6
1-4-2 石墨烯衍生物之阻隔特性 9
1-5 有機/無機奈米複合材料 11
1-5-1 奈米複合材料之種類 12
1-5-2 高分子緻密膜之透過理論 13
1-5-3 奈米複合膜透過理論模型 15
1-6文獻回顧 18
1-6-1阻隔膜的發展 18
1-6-2 石墨烯/有機高分子之奈米複合材料 23
1-6-3石墨烯阻隔薄膜之發展 25
1-7 動機與目的 28
第二章 實驗 30
2-1 實驗藥品與材料 30
2-2 實驗儀器 31
2-3 阻水和阻氧膜之製備 32
2-3-1氧化石墨烯(GO)奈米片之製備 32
2-3-2化學交聯PVA/GO複合膜之製備 34
2-4 薄膜與材料鑑定 37
2-4-1全反射式傅立葉轉換紅外線光譜儀(ATR-FTIR) 37
2-4-2 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 37
2-4-3 膨潤度測試 38
2-4-4 X射線繞射技術(X-ray diffraction, XRD) 39
2-4-5 熱性質分析 40
2-4-6 UV visiable 41
2-4-7 氧氣穿透率(Oxygen transmission rate, OTR)測試 42
2-4-8 水蒸氣穿透率(Water vapor transmission rate, WVTR) 測試 44
2-5 研究架構 45
第三章 結果與討論 46
3-1 前言 46
3-2 PVA/GO奈米複合膜之鑑定 47
3-2-1 石墨烯衍生物之鑑定 47
3-2-2 PVA/GO混摻薄膜之鑑定 53
3-3 交聯劑結構對阻隔膜之影響 57
3-3-1 交聯劑結構對交聯程度之影響 57
3-3-2 交聯劑種類對Tg、結晶狀態的影響 63
3-3-3 交聯劑種類對薄膜阻隔效能與透明性之影響 65
3-4交聯劑濃度變化對阻隔膜效能之影響 69
3-4-1交聯劑濃度對交聯程度之影響 69
3-4-2 交聯劑濃度對膨潤度與結晶度之影響 73
3-4-3交聯劑濃度對薄膜阻隔效能與透明性之影響 75
3-5 交聯時間對阻隔膜效能之影響 79
3-5-1交聯時間對交聯程度之影響 79
3-5-2交聯時間對薄膜膨潤度與結晶之影響 83
3-5-3交聯時間對薄膜阻隔效能與透明性之影響 85
第四章 結論 89
第五章 參考文獻 90


1.M.H.V. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, The Netherlands. (1996).
2.B.M. Yoo, H.J. Shin, H.W. Yoon, and H.B. Park, Graphene and graphene oxide and their uses in barrier polymers, J. Appl. Polym. Sci. 131 (2014) 39628-39650.
3.M.C. Choi, Y. Kim, and C.S. Ha, Polymers for flexible displays: from material selection to device applications, Prog. Polym. Sci. 33 (2008) 581-630.
4.H.M. Kim, J.K. Lee, and H.S. Lee, Transparent and high gas barrier films based on poly (vinyl alcohol)/graphene oxide composites, Thin Solid Films. 519 (2011) 7766-7771.
5.K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, and A. Firsov, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669.
6.A.K. Geim, Graphene: status and prospects, Science. 324 (2009) 1530-1534.
7.X. Du, I. Skachko, A. Barker, and E.Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotech. 3 (2008) 491-495.
8.R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, Fine structure constant defines visual transparency of graphene, Science. 320 (2008) 1308-1308.
9.J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano Lett. 8 (2008) 2458-2462.
10.S. Park and R.S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotech. 4 (2009) 217-224.
11.T. Land, T. Michely, R. Behm, J. Hemminger, and G. Comsa, STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition, Surf. Sci. 264 (1992) 261-270.
12.A.N. Sidorov, M.M. Yazdanpanah, R. Jalilian, P. Ouseph, R. Cohn, and G. Sumanasekera, Electrostatic deposition of graphene, Nanotechnology. 18 (2007) 135301-135304.
13.C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene, Science. 312 (2006) 1191-1196.
14.M. Choucair, P. Thordarson, and J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nature Nanotech. 4 (2009) 30-33.
15.X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science. 319 (2008) 1229-1232.
16.K. Subrahmanyam, L. Panchakarla, A. Govindaraj, and C. Rao, Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C. 113 (2009) 4257-4259.
17.P. Sutter, Epitaxial graphene: How silicon leaves the scene, Nature Mater. 8 (2009) 171-172.
18.H. Wang, Y. Wu, Z. Ni, and Z. Shen, Electronic transport and layer engineering in multilayer graphene structures, Appl. Phys. Lett. 92 (2008) 3504.
19.B.C. Brodie, On the Atomic Weight of Graphite, Philos. Trans. R. Soc. London. 149 (1859) 249-259.
20.W.S. Hummers Jr and R.E. Offeman, Preparation of graphitic oxide, J. Amer. Chem. Soc. 80 (1958) 1339-1339.
21.H. Kim, Y. Miura, and C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity, Chem. Mater. 22 (2010) 3441-3450.
22.K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, A roadmap for graphene, Nature. 490 (2012) 192-200.
23.B. Garg, T. Bisht, and Y.C. Ling, Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective, Molecules. 19 (2014) 14582-14614.
24.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon. 45 (2007) 1558-1565.
25.V. Berry, Impermeability of graphene and its applications, Carbon. 62 (2013) 1-10.
26.M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng., R. 28 (2000) 1-63.
27.L.E. Nielsen, Models for the permeability of filled polymer systems, J. Macromol. Sci. (Chem.), A1(5). 1 (1967) 929-942.
28.E. Cussler, S.E. Hughes, W.J. Ward, and R. Aris, Barrier membranes, J. Membr. Sci. 38 (1988) 161-174.
29.O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, and S.T. Nguyen, Crumpled graphene nanosheets as highly effective barrier property enhancers, Adv. Mater. 22 (2010) 4759-4763.
30.H.D. Huang, P.G. Ren, J. Chen, W.Q. Zhang, X. Ji, and Z.M. Li, High barrier graphene oxide nanosheet/poly (vinyl alcohol) nanocomposite films, J. Membr. Sci. 409 (2012) 156-163.
31.K. Marsh and B. Bugusu, Food packaging—roles, materials, and environmental issues, J. Food Sci. 72 (2007) R39-R55.
32.A. Arora and G. Padua, Review: nanocomposites in food packaging, J. Food Sci. 75 (2010) R43-R49.
33.A. Erlat, R.J. Spontak, R. Clarke, T. Robinson, P. Haaland, Y. Tropsha, N. Harvey, and E. Vogler, SiOx gas barrier coatings on polymer substrates: morphology and gas transport considerations, J. Phys. Chem. B. 103 (1999) 6047-6055.
34.K. Teshima, Y. Inoue, H. Sugimura, and O. Takai, Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane, Vacuum. 66 (2002) 353-357.
35.J. Faisant, A. Ait-Kadi, M. Bousmina, and L. Deschenes, Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends, Polymer. 39 (1998) 533-545.
36.J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging—a review, Packag. Technol. Sci. 16 (2003) 149-158.
37.G. Flodberg, A. Hellman, M.S. Hedenqvist, E. Sadiku, and U.W. Gedde, Barrier properties of blends based on liquid crystalline polymers and polyethylene, Polym. Eng. Sci. 40 (2000) 1969-1978.
38.H.A. Destéfanis, C.M. C, and E. Eleonora, Barrier properties and structural study of nanocomposite of HDPE/montmorillonite modified with polyvinylalcohol, J. Chem. 2013 (2013) 679567-679573.
39.R.K. Bharadwaj, Modeling the barrier properties of polymer-layered silicate nanocomposites, Macromolecules. 34 (2001) 9189-9192.
40.W. Li, X.Z. Tang, H.B. Zhang, Z.G. Jiang, Z.Z. Yu, X.S. Du, and Y.W. Mai, Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites, Carbon. 49 (2011) 4724-4730.
41.N. Yousefi, M.M. Gudarzi, Q. Zheng, X. Lin, X. Shen, J. Jia, F. Sharif, and J.K. Kim, Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability, Composites Part A. 49 (2013) 42-50.
42.H.D. Huang, P.G. Ren, J.Z. Xu, L. Xu, G.J. Zhong, B.S. Hsiao, and Z.M. Li, Improved barrier properties of poly (lactic acid) with randomly dispersed graphene oxide nanosheets, J. Membr. Sci. 464 (2014) 110-118.
43.K. Kalaitzidou, H. Fukushima, and L.T. Drzal, A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Compos. Sci. Technol. 67 (2007) 2045-2051.
44.Y. Xu, W. Hong, H. Bai, C. Li, and G. Shi, Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon. 47 (2009) 3538-3543.
45.X. Yang, L. Li, S. Shang, and X.m. Tao, Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites, Polymer. 51 (2010) 3431-3435.
46.X. Yang, S. Shang, and L. Li, Layer‐structured poly (vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties, J. Appl. Polym. Sci. 120 (2011) 1355-1360.
47.L. Liu, Y. Gao, Q. Liu, J. Kuang, D. Zhou, S. Ju, B. Han, and Z. Zhang, High mechanical performance of layered graphene oxide/poly (vinyl alcohol) nanocomposite films, Small. 9 (2013) 2466-2472.
48.Y. Li, R. Umer, Y.A. Samad, L. Zheng, and K. Liao, The effect of the ultrasonication pre-treatment of graphene oxide (GO) on the mechanical properties of GO/polyvinyl alcohol composites, Carbon. 55 (2013) 321-327.
49.J. Zhu, J. Lim, C.H. Lee, H.I. Joh, H.C. Kim, B. Park, N.H. You, and S. Lee, Multifunctional polyimide/graphene oxide composites via in situ polymerization, J. Appl. Polym. Sci. 131 (2014) 40177-40183.
50.O.K. Park, S.G. Kim, N.H. You, B.C. Ku, D. Hui, and J.H. Lee, Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites, Composites Part B. 56 (2014) 365-371.
51.A.M. Pinto, J. Cabral, D.A.P. Tanaka, A.M. Mendes, and F.D. Magalhães, Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films, Polym. Int. 62 (2013) 33-40.
52.H. Kang, K. Zuo, Z. Wang, L. Zhang, L. Liu, and B. Guo, Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance, Compos. Sci. Technol. 92 (2014) 1-8.
53.J. Wu, G. Huang, H. Li, S. Wu, Y. Liu, and J. Zheng, Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content, Polymer. 54 (2013) 1930-1937.
54.J. Yang, L. Bai, G. Feng, X. Yang, M. Lv, C.a. Zhang, H. Hu, and X. Wang, Thermal reduced graphene based poly (ethylene vinyl alcohol) nanocomposites: enhanced mechanical properties, gas barrier, water resistance, and thermal stability, Ind. Eng. Chem. Res. 52 (2013) 16745-16754.
55.L.L. Wu, J.j. Wang, X. He, T. Zhang, and H. Sun, Using graphene oxide to enhance the barrier properties of poly (lactic acid) film, Packag. Technol. Sci. 27 (2014) 693-700.
56.K.H. Lee, J. Hong, S.J. Kwak, M. Park, and J.G. Son, Spin self-assembly of highly ordered multilayers of graphene-oxide sheets for improving oxygen barrier performance of polyolefin films, Carbon. 83 (2015) 40-47.
57.B. Bolto, T. Tran, M. Hoang, and Z. Xie, Crosslinked poly (vinyl alcohol) membranes, Prog. Polym. Sci. 34 (2009) 969-981.
58.B. Ghanbarzadeh, H. Almasi, and A.A. Entezami, Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose, Ind. Crop. Prod. 33 (2011) 229-235.
59.N. Reddy and Y. Yang, Citric acid cross-linking of starch films, Food Chem. 118 (2010) 702-711.
60.S. Wang, J. Ren, W. Li, R. Sun, and S. Liu, Properties of polyvinyl alcohol/xylan composite films with citric acid, Carbohydr. Polym. 103 (2014) 94-99.
61.J. Chen, Y. Li, Y. Zhang, and Y. Zhu, Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker, J. Appl. Polym. Sci. 132 (2015) 42000-42007.
62.C.L. Lai, J.T. Chen, Y.J. Fu, W.R. Liu, Y.R. Zhong, S.H. Huang, W.S. Hung, S.J. Lue, C.C. Hu, and K.R. Lee, Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly (vinyl alcohol)/graphene oxide composite films, Carbon. 82 (2015) 513-522.
63.K. Evanoff, A. Magasinski, J. Yang, and G. Yushin, Nanosilicon‐Coated Graphene Granules as Anodes for Li‐Ion Batteries, Adv. Eng. Mater. 1 (2011) 495-498.
64.陳許峻, 以電漿輔助化學氣相沉積系統製備低溫氮化矽薄膜阻障層在塑膠基材之研究, 中原大學化學工程研究所學位論文. (2008) 1-97.
65.S.H. Aboutalebi, M.M. Gudarzi, Q.B. Zheng, and J.K. Kim, Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions, Adv. Funct. Mater. 21 (2011) 2978-2988.
66.H.S. Mansur, C.M. Sadahira, A.N. Souza, and A.A. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Mater. Sci. Eng., C. 28 (2008) 539-548.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top