|
1.M.H.V. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, The Netherlands. (1996). 2.B.M. Yoo, H.J. Shin, H.W. Yoon, and H.B. Park, Graphene and graphene oxide and their uses in barrier polymers, J. Appl. Polym. Sci. 131 (2014) 39628-39650. 3.M.C. Choi, Y. Kim, and C.S. Ha, Polymers for flexible displays: from material selection to device applications, Prog. Polym. Sci. 33 (2008) 581-630. 4.H.M. Kim, J.K. Lee, and H.S. Lee, Transparent and high gas barrier films based on poly (vinyl alcohol)/graphene oxide composites, Thin Solid Films. 519 (2011) 7766-7771. 5.K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, and A. Firsov, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669. 6.A.K. Geim, Graphene: status and prospects, Science. 324 (2009) 1530-1534. 7.X. Du, I. Skachko, A. Barker, and E.Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotech. 3 (2008) 491-495. 8.R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, Fine structure constant defines visual transparency of graphene, Science. 320 (2008) 1308-1308. 9.J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano Lett. 8 (2008) 2458-2462. 10.S. Park and R.S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotech. 4 (2009) 217-224. 11.T. Land, T. Michely, R. Behm, J. Hemminger, and G. Comsa, STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition, Surf. Sci. 264 (1992) 261-270. 12.A.N. Sidorov, M.M. Yazdanpanah, R. Jalilian, P. Ouseph, R. Cohn, and G. Sumanasekera, Electrostatic deposition of graphene, Nanotechnology. 18 (2007) 135301-135304. 13.C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene, Science. 312 (2006) 1191-1196. 14.M. Choucair, P. Thordarson, and J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nature Nanotech. 4 (2009) 30-33. 15.X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science. 319 (2008) 1229-1232. 16.K. Subrahmanyam, L. Panchakarla, A. Govindaraj, and C. Rao, Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C. 113 (2009) 4257-4259. 17.P. Sutter, Epitaxial graphene: How silicon leaves the scene, Nature Mater. 8 (2009) 171-172. 18.H. Wang, Y. Wu, Z. Ni, and Z. Shen, Electronic transport and layer engineering in multilayer graphene structures, Appl. Phys. Lett. 92 (2008) 3504. 19.B.C. Brodie, On the Atomic Weight of Graphite, Philos. Trans. R. Soc. London. 149 (1859) 249-259. 20.W.S. Hummers Jr and R.E. Offeman, Preparation of graphitic oxide, J. Amer. Chem. Soc. 80 (1958) 1339-1339. 21.H. Kim, Y. Miura, and C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity, Chem. Mater. 22 (2010) 3441-3450. 22.K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, A roadmap for graphene, Nature. 490 (2012) 192-200. 23.B. Garg, T. Bisht, and Y.C. Ling, Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective, Molecules. 19 (2014) 14582-14614. 24.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon. 45 (2007) 1558-1565. 25.V. Berry, Impermeability of graphene and its applications, Carbon. 62 (2013) 1-10. 26.M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng., R. 28 (2000) 1-63. 27.L.E. Nielsen, Models for the permeability of filled polymer systems, J. Macromol. Sci. (Chem.), A1(5). 1 (1967) 929-942. 28.E. Cussler, S.E. Hughes, W.J. Ward, and R. Aris, Barrier membranes, J. Membr. Sci. 38 (1988) 161-174. 29.O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, and S.T. Nguyen, Crumpled graphene nanosheets as highly effective barrier property enhancers, Adv. Mater. 22 (2010) 4759-4763. 30.H.D. Huang, P.G. Ren, J. Chen, W.Q. Zhang, X. Ji, and Z.M. Li, High barrier graphene oxide nanosheet/poly (vinyl alcohol) nanocomposite films, J. Membr. Sci. 409 (2012) 156-163. 31.K. Marsh and B. Bugusu, Food packaging—roles, materials, and environmental issues, J. Food Sci. 72 (2007) R39-R55. 32.A. Arora and G. Padua, Review: nanocomposites in food packaging, J. Food Sci. 75 (2010) R43-R49. 33.A. Erlat, R.J. Spontak, R. Clarke, T. Robinson, P. Haaland, Y. Tropsha, N. Harvey, and E. Vogler, SiOx gas barrier coatings on polymer substrates: morphology and gas transport considerations, J. Phys. Chem. B. 103 (1999) 6047-6055. 34.K. Teshima, Y. Inoue, H. Sugimura, and O. Takai, Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane, Vacuum. 66 (2002) 353-357. 35.J. Faisant, A. Ait-Kadi, M. Bousmina, and L. Deschenes, Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends, Polymer. 39 (1998) 533-545. 36.J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging—a review, Packag. Technol. Sci. 16 (2003) 149-158. 37.G. Flodberg, A. Hellman, M.S. Hedenqvist, E. Sadiku, and U.W. Gedde, Barrier properties of blends based on liquid crystalline polymers and polyethylene, Polym. Eng. Sci. 40 (2000) 1969-1978. 38.H.A. Destéfanis, C.M. C, and E. Eleonora, Barrier properties and structural study of nanocomposite of HDPE/montmorillonite modified with polyvinylalcohol, J. Chem. 2013 (2013) 679567-679573. 39.R.K. Bharadwaj, Modeling the barrier properties of polymer-layered silicate nanocomposites, Macromolecules. 34 (2001) 9189-9192. 40.W. Li, X.Z. Tang, H.B. Zhang, Z.G. Jiang, Z.Z. Yu, X.S. Du, and Y.W. Mai, Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites, Carbon. 49 (2011) 4724-4730. 41.N. Yousefi, M.M. Gudarzi, Q. Zheng, X. Lin, X. Shen, J. Jia, F. Sharif, and J.K. Kim, Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability, Composites Part A. 49 (2013) 42-50. 42.H.D. Huang, P.G. Ren, J.Z. Xu, L. Xu, G.J. Zhong, B.S. Hsiao, and Z.M. Li, Improved barrier properties of poly (lactic acid) with randomly dispersed graphene oxide nanosheets, J. Membr. Sci. 464 (2014) 110-118. 43.K. Kalaitzidou, H. Fukushima, and L.T. Drzal, A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Compos. Sci. Technol. 67 (2007) 2045-2051. 44.Y. Xu, W. Hong, H. Bai, C. Li, and G. Shi, Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon. 47 (2009) 3538-3543. 45.X. Yang, L. Li, S. Shang, and X.m. Tao, Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites, Polymer. 51 (2010) 3431-3435. 46.X. Yang, S. Shang, and L. Li, Layer‐structured poly (vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties, J. Appl. Polym. Sci. 120 (2011) 1355-1360. 47.L. Liu, Y. Gao, Q. Liu, J. Kuang, D. Zhou, S. Ju, B. Han, and Z. Zhang, High mechanical performance of layered graphene oxide/poly (vinyl alcohol) nanocomposite films, Small. 9 (2013) 2466-2472. 48.Y. Li, R. Umer, Y.A. Samad, L. Zheng, and K. Liao, The effect of the ultrasonication pre-treatment of graphene oxide (GO) on the mechanical properties of GO/polyvinyl alcohol composites, Carbon. 55 (2013) 321-327. 49.J. Zhu, J. Lim, C.H. Lee, H.I. Joh, H.C. Kim, B. Park, N.H. You, and S. Lee, Multifunctional polyimide/graphene oxide composites via in situ polymerization, J. Appl. Polym. Sci. 131 (2014) 40177-40183. 50.O.K. Park, S.G. Kim, N.H. You, B.C. Ku, D. Hui, and J.H. Lee, Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites, Composites Part B. 56 (2014) 365-371. 51.A.M. Pinto, J. Cabral, D.A.P. Tanaka, A.M. Mendes, and F.D. Magalhães, Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films, Polym. Int. 62 (2013) 33-40. 52.H. Kang, K. Zuo, Z. Wang, L. Zhang, L. Liu, and B. Guo, Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance, Compos. Sci. Technol. 92 (2014) 1-8. 53.J. Wu, G. Huang, H. Li, S. Wu, Y. Liu, and J. Zheng, Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content, Polymer. 54 (2013) 1930-1937. 54.J. Yang, L. Bai, G. Feng, X. Yang, M. Lv, C.a. Zhang, H. Hu, and X. Wang, Thermal reduced graphene based poly (ethylene vinyl alcohol) nanocomposites: enhanced mechanical properties, gas barrier, water resistance, and thermal stability, Ind. Eng. Chem. Res. 52 (2013) 16745-16754. 55.L.L. Wu, J.j. Wang, X. He, T. Zhang, and H. Sun, Using graphene oxide to enhance the barrier properties of poly (lactic acid) film, Packag. Technol. Sci. 27 (2014) 693-700. 56.K.H. Lee, J. Hong, S.J. Kwak, M. Park, and J.G. Son, Spin self-assembly of highly ordered multilayers of graphene-oxide sheets for improving oxygen barrier performance of polyolefin films, Carbon. 83 (2015) 40-47. 57.B. Bolto, T. Tran, M. Hoang, and Z. Xie, Crosslinked poly (vinyl alcohol) membranes, Prog. Polym. Sci. 34 (2009) 969-981. 58.B. Ghanbarzadeh, H. Almasi, and A.A. Entezami, Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose, Ind. Crop. Prod. 33 (2011) 229-235. 59.N. Reddy and Y. Yang, Citric acid cross-linking of starch films, Food Chem. 118 (2010) 702-711. 60.S. Wang, J. Ren, W. Li, R. Sun, and S. Liu, Properties of polyvinyl alcohol/xylan composite films with citric acid, Carbohydr. Polym. 103 (2014) 94-99. 61.J. Chen, Y. Li, Y. Zhang, and Y. Zhu, Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker, J. Appl. Polym. Sci. 132 (2015) 42000-42007. 62.C.L. Lai, J.T. Chen, Y.J. Fu, W.R. Liu, Y.R. Zhong, S.H. Huang, W.S. Hung, S.J. Lue, C.C. Hu, and K.R. Lee, Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly (vinyl alcohol)/graphene oxide composite films, Carbon. 82 (2015) 513-522. 63.K. Evanoff, A. Magasinski, J. Yang, and G. Yushin, Nanosilicon‐Coated Graphene Granules as Anodes for Li‐Ion Batteries, Adv. Eng. Mater. 1 (2011) 495-498. 64.陳許峻, 以電漿輔助化學氣相沉積系統製備低溫氮化矽薄膜阻障層在塑膠基材之研究, 中原大學化學工程研究所學位論文. (2008) 1-97. 65.S.H. Aboutalebi, M.M. Gudarzi, Q.B. Zheng, and J.K. Kim, Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions, Adv. Funct. Mater. 21 (2011) 2978-2988. 66.H.S. Mansur, C.M. Sadahira, A.N. Souza, and A.A. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Mater. Sci. Eng., C. 28 (2008) 539-548.
|