跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/19 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江大偉
研究生(外文):Chiang Ta Wei
論文名稱:戟齒輪及其創成機器之共軛條件研究
論文名稱(外文):Study on the Generalized Conjugate Conditions among the Hypoid Gear Set and the Correspoiding Generators
指導教授:馮展華馮展華引用關係
指導教授(外文):Fong Zhang Hua
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:95
中文關鍵詞:數學模式戟齒輪傘齒輪
外文關鍵詞:Mathematical ModelHypoid GearSpiral Bevel Gear
相關次數:
  • 被引用被引用:2
  • 點閱點閱:651
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
在以往的文獻中,特殊的戟齒輪切齒法往往需要特別的數學模式來表示,本文的通用戟齒輪切齒法數學模式為經由齒輪原理推算出來,同時,這套數學模式可以用於模擬戟齒輪的創成法或非創成法,其中包含端面銑削法、端面滾切法、直進式切削法以及錐蝸杆滾切法。在通用數學模式之應用上,現有的戟齒輪加工法可以被通用戟齒輪切齒法數學模式所模擬,透過特殊的戟齒輪切齒機機械常數轉換設定,就可以使用此通用數學模式。根據剛體的相對運動,得知齒輪間的相對運動為一螺旋運動,同時,可以利用此相對螺旋運動的關係,確定齒輪間的相對螺旋參數及瞬心軸。就相互嚙合的共軛齒面來說,相對螺旋參數必須相同,至於各齒面之間的瞬心軸,在同一座標系之下則必須要有交點或者重合,如此,方能滿足接觸齒面的共軛條件。
Most mathematical models proposed in the literatures are usually bonded to specified gear cutting process with certain kind of hypoid generator. A mathematical model of universal hypoid generator is deduced by theory of gearing. At the same time, the proposed mathematical model simulates the face-milling, face-hobbing, plunge-cutting, and bevel-worm-shaped hobbing processes with either generating or non-generating cutting for hypoid gear. Application of the proposed mathematical model: the majority of the existing cutting method can be simulated by the proposed mathematical model with machine setting conversion. Based on the relative motion of two bodies, knowing that the relative motion of two gears may be represented as a screw motion. And, the location and direction of the screw axis of relative motion as well as the screw parameter of relative motion can be determined. Consider the conjugate surfaces of meshing, screw parameters of relative motion must be coincided. Besides, instantaneous axes of tooth surfaces have to pass through one point or coincide in the same coordinate system. Therefore, it just fulfills the conjugate conditions of contact tooth surface.
中文摘要
英文摘要
本文目錄
圖表目錄
第一章 緒論
1-1 研究背景
1-2 文獻回顧
1-3 研究目的
1-4 論文架構
第二章 泛用戟齒輪創成機的數學模式之建立
2-1 現有的戟齒輪加工法
2-2 戟齒輪齒面參數式之建立
2-3 戟齒輪齒面的嚙合方程式
第三章 齒面間的瞬時相對運動
3-1 瞬時相對運動的推導
3-1.1 剛體的運動
3-1.2 剛體的螺旋運動
3-1.3 剛體的相對螺旋運動
3-2 各齒面間的瞬時相對運動
3-2.1 大齒輪與小齒輪之瞬時相對運動
3-2.2 大齒輪與其產形齒之瞬時相對運動
3-2.3 小齒輪與其產形齒之瞬時相對運動
第四章 嚙合齒面的共軛條件
4-1 工件齒輪齒面之創成
4-1.1 大齒輪齒面之創成
4-1.2 小齒輪齒面之創成
4-2 在齒輪測試機上的大齒輪與小齒輪齒面
4-2.1 在齒輪測試機上之大齒輪齒面參數式
4-2.2 在齒輪測試機上之大齒輪齒面參數式
4-3 大齒輪和小齒輪齒面接觸之關係式
4-4 共軛條件之深入探討
4-4.1 線接觸或點接觸共軛的條件
4-4.2 推導泛用戟齒輪創成機之機械設定的判斷
第五章 通用數學模式之應用
5-1 刀具頭的設計
5-2 工件齒輪之齒面參數式
5-2.1 齒面軌跡方程式
5-2.2 嚙合方程式
5-3 切齒機之機械常數轉換設定
5-4 利用傳統切齒機模擬齒形
第六章 共軛條件之驗證
6-1 大齒輪和小齒輪之齒面嚙合
6-2 齒面間之瞬時相對運動
6-2.1 大齒輪與小齒輪之瞬時相對運動
6-2.2 大齒輪與其產形齒之瞬時相對運動
6-2.3 小齒輪與其產形齒之瞬時相對運動
6-3 瞬心軸與中點在空間中的位置
6-4 共軛條件之分析
6-4.1 就相對螺旋參數作探討
6-4.2 就瞬心軸作探討
第七章 結論與未來展望
7-1 結論
7-2 未來展望
參考文獻
[1] Huston, R. L., Lin, Y., and Coy, J. J., 1983, “Tooth Profile Analysis of Circular-Cut , Spiral Bevel Gears,“ ASME Journal of Mechanical Design, Vol.105, pp. 132-137.
[2] 董學朱編著,齒輪嚙合理輪基礎,機械工業出版社,1989
[3] Litvin, F. L., 1989, Theory of Gearing, NASA RP-1212, Washington DC.
[4] Fong, Z. H., and Tsay, C. B., 1990, “Tooth Contact Analysis of Spiral Bevel Gears,” Journal of Chinese Society of Mechanical Engineers, Vol. 11, pp. 538-544.
[5] Fong, Z. H., and Tsay, C. B., 1991, “A Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears,” ASME Journal of Mechanical Design, Vol. 113, pp. 174-181.
[6] Fong, Z. H., and Tsay, C. B., 1991, “A Study on the Tooth Geometry and Cutting Machine Mechanisms of Spiral Bevel Gears,” ASME Journal of Mechanical Design, Vol. 113, pp. 346-351.
[7] Fong, Z. H., and Tsay, C. B., 1992, “Kinematical Optimization of Spiral Bevel Gears,” ASME Journal of Mechanical Design, Vol. 114, pp. 498-506.
[8] Gosselin, C. J., and Cloutier L., 1993, “The Generating Space for Parabolic Motion Error Spiral Bevel Gears Cut by the Gleason Method,” ASME Journal of Mechanical Design, Vol. 115, pp. 483-489.
[9] Litvin, F. L., 1994, Gear Geometry and Applied Theory, Prentice Hall, Englewood Cliffs, NJ 07632.
[10] Bibel, G. D., Kumar, A., Reddy, S., and Handschuh R., 1995, “Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis,” ASME Journal of Mechanical Design, Vol. 117, pp. 235-240.
[11] Gosselin, C., Cloutier, L., and Nguyen, Q. D., 1995, “A general Formulation for the Calculation of the Load Sharing and Transmission Error under Load of Spiral Bevel and Hypoid Gears,“ Mechanism and Machine Theory, Vol. 30, pp. 433-450.
[12] Zhang, Y., Litvin, F. L., and Handschuh, R. F., 1995, “Computerized Design of Low-Noise Face-Milled Spiral Bevel Gears,” ASME Journal of Mechanical Design, Vol. 117, pp. 254-261.
[13] Lin, C. Y., Tsay, C. B., and Fong, Z. H., 1997 “Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method,” Mechanism and Machine Theory, Vol. 32, pp. 121-136.
[14] Gosselin, C., Nonaka, T., Shiono, Y., Kubo, A., and Tatsuno, T., 1998, “Identification of the Machine Settings of Real Hypoid Gear Tooth Surfaces,” ASME Journal of Mechanical Design, Vol. 120, pp. 429-440.
[15] Lin, C. Y., Tsay, C. B., and Fong, Z. H., 1998, “Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears with Minimum Surface Deviation,” Mechanism and Machine Theory, Vol. 33, pp. 785-803.
[16] Davidov, Y., 1998, “General Idea of Generating Mechanism and its Application to Bevel Gear,” Mechanism and Machine Theory, Vol. 33, pp. 505-515.
[17] Shunmugam, M. S., Rao, B. S., and Jayaprakash, V., 1998,
“Establishing Gear Tooth Surface Geometry and Normal Deviation, Part II-Bevel Gear,” Mechanism and Machine Theory, Vol. 33, pp. 525-534.
[18] Fong, Z. H., 1998, “Computerized Simulation of Meshing of Duplex-Cutting Spiral Bevel and Hypoid Gears,” The Chinese Society of Mechanism and Machine Theory 1st Natl. Conf. On the Design of Mechanisms and Machines, pp. 263-273.
[19] Fong, Z. H., 2000, “Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motions,” ASME, Journal of Mechanical Design, Vol. 122, pp. 136-142.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top