跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張祐甄
研究生(外文):Chang Yu Chen
論文名稱:溶膠-凝膠法/含浸法製備鈀觸媒於去除污染物CO及NO之研究
論文名稱(外文):The activity of CO and NO of Pd catalyst prepared by sol-gel/impregnation methods
指導教授:魏銘彥
指導教授(外文):Wey Ming Yen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:106
中文關鍵詞:觸媒焚化溶膠-凝膠法含浸法CONO活性測試
外文關鍵詞:Sol-gelimpregnationpalladium catalystactivation energyCONO.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
台灣經濟繁榮,帶動工商發展,但隨之而來的污染問題,卻是值得關注的焦點。台灣目前多以焚化的方式處理廢棄物,因其能將廢棄物分解轉換為最終的穩定態,具有安定化、減量化、資源化及無害化的優點。而觸媒焚化能在較低溫度下反應且降低NOx之排放,現已廣泛應用於空氣污染防制上。
本研究主要採兩種不同的觸媒製備方式( 溶膠-凝膠法及含浸法 )製備出Pd觸媒,製備的方式為以溶膠-凝膠法將載體( Al2O3-SiO2 )製備出來,再以含浸的方式將活性相金屬Pd負載於其上;另一種為直接以溶膠-凝膠法將活性相金屬及載體一同製備,並將製備出的觸媒作物理化學結構分析,分析項目有:BET比表面積、 XRPD結晶物種分析、FESEM表面形貌觀察、TEM微結構及EDS元素分析等,觸媒的活性測試則是使用石英反應器且採連續進流方式,通入污染物氣體CO進行催化氧化反應,並探討同時去除污染物CO及NO之可能性。
研究結果指出,使用不同的製備方式所得到的觸媒,以含浸法製備的觸媒擁有較大比表面積,孔洞體積與平均孔徑上亦同,並孔洞大都落在中孔範圍。雖使用不同製備方式,在結晶物種上並無太大差異。在觸媒微結構的分析上,溶膠-凝膠法製備出的活性相Pd金屬粒子遠小於使用含浸法所製備的Pd金屬粒子,且分散性佳,較無團聚現象,此結果亦反應於觸媒活性測試上。以CO作活性測試結果,溶膠-凝膠法製備的觸媒其活化能小於含浸法製備的觸媒,顯示其觸媒活性亦是溶膠-凝膠法製備的觸媒優於使用含浸法製備的觸媒。
當同時去除CO及NO兩種污染物時,反應溫度是一影響去除率的重要因素,但NO去除率欲增加時需要大量CO來作為還原劑,因此有CO過量之問題,故在同時處理CO及NO時,還需考慮還原劑的添加。
The object of this research was to investigate the effects of different preparation methods on activity performances of palladium (Pd) catalysts. The Pd catalysts were prepared by sol-gel and impregnation methods, respectively. In the former process, support and Pd active site were synthesized in one step during the sol-gel method; in the latter process, support was synthesized by sol-gel method firstly, and then the coating with Pd active site on its surface with impregnation method. The physical texture and chemical character of Pd catalysts were characterized with BET surface area, X-ray powder diffraction (XRPD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). The activity performances of Pd catalysts were evaluated by CO oxidation which tested with quartz reactor continuously. Furthermore, the possibility of removing CO and NO simultaneously by Pd catalysts were also investigated.
The results indicated that the catalyst prepared by impregnation method has larger specific surface area than that prepared with sol-gel ones and the crystalline species were little different. However, the particle size of Pd catalysts which prepared by sol-gel method is much smaller than that prepared by impregnation method. Furthermore, the results also exhibited that the Pd catalysts prepared by sol-gel method had higher activity and showed lower activation energy than that prepared by impregnation method. The results might deduce that the Pd catalyst prepared by sol-gel method can improve the dispersion of Pd catalyst and then resulted in high activity.
For removal of CO and NO simultaneously, the results showed that the removal efficiency of NO could be improved by adding CO agent at stoichiometry (CO/NO) equal to 2.5, but this may result in excess of CO.
摘 要 II
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1-1研究緣起 1
1-2研究動機與目的 1
1-3研究架構與內容 2
第二章 文獻回顧 5
2-1 氣狀污染物 5
2-1-1 二氧化硫( SO2 ) 5
2-1-2 一氧化氮( NOx ) 6
2-1-3 一氧化碳( CO ) 8
2-2觸媒焚化之特性 9
2-2-1 觸媒焚化之原理與反應機制 9
2-2-2影響觸媒焚化去除效率之因素 10
2-2-2-1溫度 10
2-2-2-2空間速度 10
2-2-2-3污染物種類及濃度 11
2-3觸媒基本組成及活性 12
2-3-1催化系統之分類 12
2-3-2 觸媒的種類及組成 12
2-3-3載體( Support )與助促劑( Promoter )對觸媒活性之影響 13
2-3-4觸媒活性衰退 16
2-3-4-1毒化( Poisoning ) 16
2-3-4-2 結垢( Fouling ) 18
2-3-4-3 燒結( Sintering ) 19
2-4觸媒的吸附反應、機制探討 21
2-5 觸媒之製備方法 22
2-5-1 含浸法( Impregnation ) 23
2-5-1-1 含浸法之金屬顆粒分佈 24
2-5-2 溶膠-凝膠法( Sol-gel ) 25
2-5-2-1溶膠-凝膠法之反應機制 25
2-5-2-2 前驅物的影響 25
2-5-2-3 pH值的影響 27
2-5-2-4 溶劑的影響 29
2-5-2-5 熟化時間 30
2-6觸媒反應動力 30
2-6-1膜阻力控制(Film Resistance Control) 31
2-6-2表面現象控制( Surface Phenomenon Control ) 31
2-7速率求法 32
2-7-1微分反應實驗法 32
2-7-2積分反應實驗法 34
2-8 文獻總結 35
第三章 實驗設備及方法 37
3-1 實驗設備 37
3-1-1觸媒製備 37
3-1-2-1 SiO2/Al2O3 載體製備 37
3-1-2-2 SiO2/Al2O3 觸媒製備 38
3-1-2觸媒反應系統 39
3-1-3 樣品分析儀器 42
3-1-4 實驗藥品與器材 42
3-2 實驗試程規劃及操作條件 43
3-3觸媒結構分析項目 43
3-3-1 觸媒比表面積分析 43
3-3-2 觸媒物種分析( X-ray粉末繞射法 ) 43
3-3-3 觸媒表面型態、微觀組織與成分分析( 掃描式電子顯微鏡SEM 、穿透式電子顯微鏡TEM與X射線能量散佈分析儀EDS ) 44
第四章 結果與討論 45
4-1觸媒特性分析 45
4-1-1 BET比表面積與平均孔徑之測定 45
4-1-2 XRPD物種分析 48
4-1-3 FESEM表面型態分析 50
4-1-4 TEM微結構分析與EDS定性、定量分析 58
4-2 觸媒焚化對CO去除效率之探討 61
4-2-1 載體對CO去除率之影響 61
4-2-2 空間速度對觸媒去除CO之影響 62
4-2-3 氣體體積流率對觸媒去除CO之影響 65
4-2-4 觸媒粒徑對觸媒去除CO之影響 67
4-2-5 氧濃度對觸媒去除CO之影響 68
4-2-6 反應溫度對觸媒去除CO之影響 70
4-2-7 一氧化碳濃度對觸媒去除CO之影響 72
4-2-8 積分反應實驗法動力分析結果 73
4-2-9 觸媒同時去除CO與NO之探討 75
4-2-9-1 觸媒量對去除NO之影響 76
4-2-9-2 CO/NO濃度比對去除NO之影響 78
4-2-9-3 不同反應溫度對去除NO之影響 81
第五章 結論與建議 83
5-1 結論 83
5-2 建議 85
參考文獻 86
附錄一 實驗規劃與試程 95
附錄二 等溫吸附曲線之分類 105
Albers, P., Pietsch, J. and Parker, S.F., “Poisoning and deactivation of palladium catalyst”, Journal of Molecular Catalysis A: Chemical, Vol.173, pp.275-286, (2001).
Aramendia, M.A., Bortau, V., Garcia, I.M., Jimenez, C., Marinas, J.M. and Urbano, F.J., “Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodebromination of bromobenzene over palladium supported catalysts: activity and deactivation”, Applied Catalysis B: Environmental, Vol.20, pp.101-110, (1999).
Barrera, A., Viniegra, M., Bosch, P., Lara, V.H. and Fuentes, S., “Pd/Al2O3-La2O3 catalysts prepared by sol-gel: characterization and catalytic activity in the NO reduction by H2”, Applied Catalysis B: Environmental, Vol.34, pp.97-111, (2001).
Barton, R.G., Clark, W.D. and Seeker, W.R., “Fate of Metals in waster Combustion Systems”, Combustion Science and Technology, Vol.74, pp.327-342, (1990).
Bekyarova, E., Fornasiero, P., Kaspar, J. and Graziani, M., “CO Oxidation on Pd/ CeO2-ZrO2 Catalysts”, Catalysis Today, Vol.45, pp.179-183, (1998).
Bhattacharyya, A., Chakraborti, P.C., Mukherjee, S., Mitra, M.K. and Das, G.C., “Preparation of alumina-silica-nickel nanocomposite by in situ reduction through sol-gel route”, Science and Technology of Advanced Materials, Vol.2, pp.449-454, (2001).
Brinker, C.J. and Scherer, G.W., Sol-Gel Science, Academic press, Inc, (1990).
Buelna, G. and Lin, Y. S., “Sol-gel-derived mesoporous γ-alumina granules”, Microporous and Mesoporous Materials, Vol.30, pp.359-369, (1999).
Castillo, S., Morán-Pineda, M., Molina V., Gómez., R., and López, T., “Catalytic reduction of nitric oxide on Pt and Rh catalysts supported on alumina and titania synthesized by the sol-gel method”, Applied Catalysis B: Environmental, Vol.15, pp.203-209, (1998).
Cesar R. Silva and Claudio Airoldi., “Acid and Base Catalysts in the Hybrid Silica Sol-Gel Process”, Journal of Colloid and Interface Science, Vol.195, pp.381-387, (1997).
Chang, Y.M., “Effect of Incineration Temperature on CO Emission during Sludge Incineration in CFBI”, J. of the Chin. Environ. Eng., Vol.4, pp.267-274, (1994).
Chen, C.L., “Study on Reaction Kinetics of Volatile Organics by Catalystic Incineration Using Pt Catalyst”, M. S. Thesis, Graduate Inst. of Environ. Eng., National Sun Yet Sen Unvi., Kaohusing, Taiwan, R.O.C., (1993).
Chu, H. and Lee, W. T., “The Effect of Sulfur Poisoning of Dimethy Disulfide on the Catalytic Incineration over Pt-Al2O3 Catalyst”, The Science of the Total Environment, Vol.209, pp.217-224, (1998).
Chu, W. and Windawi, H., “Control VOCs via Catalyst Oxidation”, Chemical Engineering Progress, pp.37-43, (1996).
Ciuparu, D., Bensalem, A. and Pfefferle, L., “Pd-Ce Interactions and Adsorption Properties of Palladium: CO and NO TPD Studies over Pd-Ce/Al2O3 Catalysts.” Applied Catalysis B: Environmental, Vol.26, pp.241-255, (2000).
Deng, S.G. and Lin, Y.S., “Synthesis, Stability and Sulfation Properties of Sol-Gel-Derived Regenerative Sorbents for Flue Gas Desulfurization”, Ind. Eng. Chem. Res., Vol.35, pp.1429-1437, (1996).
Ermakova, M.A. and Ermakov, D.Yu., “High-loaded nickel-silica catalysts for hydrogenation, prepared by sol-gel Route: structure and catalytic behavior”, Applied Catalysis A: General, Vol.245, pp.277-288, (2003).
Euzen, P., Gal, J., Rebours, B. and Martin, G., “Deactivation of palladium catalyst in catalytic combustion of methane”, Catalysis Today, Vol.47, pp.19-27, (1999).
Fuentes, S., Bogdanchikova, N., Avalos-Borja, M., Boronin, A., Farias, M.H., Diaz, G., Cortes, A.G. and Barrera, A., “Structural and Catalytic Properties of Pd/Al2O3-La2O3 Catalysts”, Catalysis Today, Vol.55, pp.301-309, (2000).
Gerstle, R.W. and Albrinck, D.N., “Atmospheric Emissions of Metals from Sewage sludge Incineration’’ Journal of Air Pollution Control Association, Vol.32, pp.1113-1123, (1982).
Gomez, R., Bertin, V., Lopez, T., Schifter, I. and Ferrat, G., “Pt-Sn/Al2O3 sol-gel catalysts: catalytic properties”, Journal of Molecular Catalysis A: Chemical, Vol.109, pp.55-66, (1996).
Gonzalez, R.D., Lopez, T. and Gomez, R., “Sol-Gel Preparation of Supported Metal Catalysts”, Catalysis Today, Vol.35, pp.293-317, (1997).
Gonzalez-Velasco, J.R., Gutierrez-Ortiz, M.A., Marc, J.L., Botas, J.A., Gonzalez- Marcos, M.P. and Blabchard, G., “Contribution of Cerium/Zirconium Mixed Oxides to the Activity of a New Generation of TWC ” Applied Catalysis B: Environmental, Vol.22, pp.167-178, (1999).
Granger, P., Lecomte, J.J., Leclercq, L. and Leclercq, G., “Kinetics of the CO+O2 Reaction over three-way Pt-Rh Catalysts”, Applied Catalyst A: General Vol.218, pp.257-267, (2001).
Heck, R.M. and Farrauto, R.J., “Catalytic Air pollution Control”, Van Nostrand Reinhold, New York, (1995).
Kim, D.H., Woo S.I., Noh, J. and Yang, O.B., “Synergistic effect of canadium and zirconium oxides in the Pd-only three-way catalysts synthesized by sol-gel method”, Applied Catalysis A: General, Vol.207, pp.69-77, (2001).
Kim, D.H., Woo, S.I. and Yang, O.B., “Effect of pH in a Sol-Gel Synthesis on the Physicochemical Properties of Pd-alumina Three-Way Catalyst”, Applied Catalysis B: Environmental, Vol.26, pp.285-289, (2000).
Kobayashi, T., Yamada, T. and Kayano, K., “Effect of Basic Metal Additives on NOx Reduction Property of Pd-Based Three-Way Catalyst”, Applied Catalysis B: Environmental, Vol.30, pp.287-292, (2001).
Kung, H.H. and Ko, E.I., “Preparation of oxide catalysts and catalyst supports-a review of recent advances”, The Chemical Engineering Journal, Vol.64, pp.203-214, (1996).
Kusakabe, K., Sakamoto, S., Saie, T. and Morooka, S., “Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkyltriethoxysilanes”, Separation and Purification Technology, Vol.16, pp.139-146, (1999).
Leofanti, G., Padovan, M., Tozzola, G. and Venturelli, B., “Surface area and pore texture of catalysts”, Catalysis Today Vol.41, pp.207-219, (1998).
Li, L., Qinghua, L., Jie, Y., Xuefeng, Q., Wenkai, W., Zikang, Z. and Zongguang, W., “Photosensitive polyimide(PSPI) materials containing inorganic nano particles (I)PSPI/TiO2 hybrid materials by sol-gel process”, Materials Chemistry and Physics, Vol.74, pp.210-213, (2002).
Liotta, L.F., Deganello, G., Delichere, P., Leclercq, C. and Martin, G.A., “Localization of Alkali Metal Ions in Sodium-Promoted Palladium Catalysts as Studied by Low Energy Ion Scattering and Transmission Electron Microscopy”, Journal of Catalysis, Vol.164, pp.334-340, (1996).
Lopez V.T.R. and Bokhimi G.X., “Synthesis, characterization and catalytic properties of Pt/CeO2-Al2O3 and Pt/La2O3-Al2O3 sol-gel derived catalysts”, Journal of Molecular Catalysis A: Chemical, Vol.167, pp.91-99, (2001).
Ma, Z., Yue, Y., Deng, X. and Gao, Z., “Nanosized anatase TiO2 as precursor for preparation of sulfated titania catalysts”, Journal of Molecular Catalysis A: Chemical, Vol.178, pp.97-104, (2002).
Mahmoud, S., Ammoudeha, H, Gharaibeh, S. and Melsheimer, J., “Hydrogenation of cinnamaldehyde over sol-gel Pd/SiO2 catalysts: kinetic aspects and modification of catalytic properties”, Journal of Molecular Catalysis A: Chemical, Vol.178, pp.161-167, (2002).
Manasilp, A. and Gulari, E., “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications”, Applied Catalysis B: Environmental, Vol.37, pp17-25, (2002).
Mars, P. and Van Krevelen, D.W., “Oxidation carried out by means of vanadium oxide catalyst”, Chemical Engineering Science, Vol.3, pp.41-59, (1954).
Masuda, K., Sano, T., Mizukami, F. and Kuno, K., “Effect of the type of support preparation on the thermostability and the oxidation activity of CeOx/BaO/Al2O3-supported Pd catalysts”, Applied Catalysis A: General, Vol.133, pp.59-65, (1995).
Miller, J.M. and Lakshmi, L.J., “Synthesis, Characterization, and Activity Studies of V2O5/ZrO2-SiO2 Catalysts”, Journal of Catalysis, Vol.184, pp.68-76, (1999).
Mitome, J., Aceves, E. and Ozkan, U.S., “Role of lanthanide elements on the catalytic behavior of supported Pd catalysts in the reduction of NO with methane”, Catalysis Today, Vol.53, pp.597-606, (1999).
Moran-Pineda, M., Castillo, S., Lopez, T., R. Cordero-borboa G. and Novaro, O., “Synthesis, characterization and catalytic in the reduction of NO by CO on alumina-ziconia sol-gel derived mixed oxides”, Applied catalysis B: Environmental, Vol.21, pp.79-88, (1999).
Muraki, H. and Zhang, G., “Design of Advanced Automotive Exhaust Catalysts” Catalysis Today, Vol.63, pp.337-345, (2000).
Noh, J., Yang, O., Kim, D.H. and Woo, S.I., “Characteristics of the Pd-only three-way catalysts prepared by sol-gel method”, Catalysis Today, Vol.53, pp.575-582, (1999).
Pecchi, G., Morales, M. and Reyes, P., “Pt/SiO2 Catalysts Obatained by the Sol-Gel Method Influence of the pH of Gelation on the Surface and Catalystic Properties” React.Kinet.Catal.Lett., Vol.61, pp.273-244, (1997).
Rabinowitz, H.N., Tauster, S.J. and Heck Ronald, “The Effect of Sulfur & Ceria on the Activity of Automotive Pd/Rh catalysts”, Appiled Cataysis A: General, Vol.212, pp.215-222, (2001).
Rao, K.K., Banu, T., Vithal, M., G.Y.S.K. Swamy, K. Ravi Kumar, “Preparation and characterization of bulk and nano particles of La2Zr2O7 and Nd2Zr2O7 by sol-gel method”, Materials Letters, Vol.54, pp.205-210, (2002).
Ryu, Z., Zheng, J., Wang, M. and Zhang, B., “Characterization of pore size distributions on carbonaceous adsorbents by DFT”, Carbon, Vol.37, pp.1257-1264, (1999).
Silva, C.R. and Airoldi, C., “Acid and Base Catalysts in the Hybrid Silica Sol-Gel Process”, Journal of Colloid and Interface Science, Vol.195, pp381-387, (1997).
Smith, J.M., “Chemical Engineering Kinetics” 3 rd ed. McGraw Hill New York NY (1981).
Suh, D.J., Park, T.-J., Kim, J.-H. and Kim, K.-L., “Nickel-alumina aerogel catalysts prepared by fast sol-gel synthesis”, Journal of Non-Crystalline Solids, Vol.225, pp.168-172, (1998).
Suhonen, S., Valden, M., Hietikko, M., Laitinen, R., Savimaki, A. and Harkonen, M., “Effect of Ce-Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD”, Applied Catalysis A: General, Vol.218, pp.151-160, (2001).
Tanaka, S., Mizukami, F., Niwa, S., Toba, M., Maeda, K., Shimada, H. and Kunimori, K., “Preparation of highly dispersed silica-supported palladium catalysts by a complexing agent-assisted sol-gel method and their characteristics”, Applied Catalysis A: General, Vol.229, pp.165-174, (2002).
Tandala, S., Mizukami, F., Niwa, S., Toba, M., Tasi, Gy. and Kunimori, K., “Highly selective formation of aldehydes in the hydrogenation of the corresponding acid chlorides with silica- supported palladium catalysts prepared by a complexing agent- assisted sol-gel method”, Applied Catalysis A: General, Vol.229, pp.175-180, (2002).
Tichenor, B.A. and Palazzola, M.A., “Destruction of volatile organic compounds vis catalytic incineration”, Environmental Progress, Vol.6, pp.172-179, (1987).
Toebes, M.L., Dillen, J.A., and Jong, K.P., “Synthesis of supported palladium catalysts”, Journal of Molecular Catalysis A: Chemical, Vol.173, pp.75-98, (2001).
Tonnetto, G., Ferreira, M.L. and Damiani, D.E., “A Combained Theoretical and Experimental Study of the Effects of Residual Rhlorine on the Behavior of Pd/ -Al2O3 Catalysts for Methane Oxidatoin” Journal of Molecular Catalysis A: Chemical, Vol.171, pp.123-141, (2001).
Wang, Z., Liu, Q., Yu, J., Wu, T. and Wang, G., “Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods”, Applied Catalysis A: General, Vol.239, pp.87-94, (2003).
Wang, Z.M. and Lin, Y.S., “Sol-Gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles”, Journal of Catalysis, Vol.174, pp.43-51, (1998).
Watson, J.M. and Ozkan, U.S., “Role of NH3 as an intermediate in reduction of NO with CH4 over sol-gel Pd catalysts on TiO2”, Journal of Molecular Catalysis A: Chemical, Vol.192, pp.79-91, (2003).
Weihulst, H.Z.G. “Catalytic Combustion of n-pentane on Pt Supported on Solid Superaicds”, Applied Catalysis B:Environmental, Vol.17, pp.37-42, (1998).
Wey, M.Y., Yang, W.Y., Huang, H.C. and Chen, J.C., “Catalytic oxidation of Organic Compounds in Incineration Flue Gas by a Commercial Palladium Catalyst”, Air and Waste Management Association, Vol.52, pp.198-207, (2002).
Wu, H-C., Liu, L-C. and Yang, S-M., “Effect of additives on supported noble metal catalysts for oxidation of hydrocarbons and carbon monoxide”, Applied Catalysis A: General, Vol.211, pp.159-165, (2001).
Yasuda, K. and Takahashi, M., “The Emission of Polycyclic Aromatic Hydrocarbons from Municipal Solid Waste Incinerators during the Combustion Cycle”, Journal of Air and Waste Management Association, Vol.48, pp.441-447, (2001).
Yu, T.C. and Henry, S., “The Effect of Sulfur Poisoning on Methane Oxidation over Palladium Supported on -Alumina Catalysts.” Applied Catalysis B: Environmental, Vol.18, pp.105- 114, (1998).
Zou, W., Ph.D. Thesis, Tulane University. New Orleans, LA, (1994).
朱小蓉,陳郁文,“工業廢氣特殊處理技術”,化工資訊,第67-78頁,(1992)。
朱信,柯子星,曾庭科,“以Pt/γ-Al2O3觸媒處理甲基異丁基酮之研究”第十六屆空氣污染控制技術研討會論文集,pp.189-195,(1999)。
吳立偉,“以MnO/Fe2O3觸媒焚化處理甲硫醇與乙硫醇之研究”碩士論文,國立成功大學化學工程研究所,台南,(1996)。
吳榮宗,“工業觸媒概論”國興出版社,(1989)。
宋培彰,“過渡金屬氧化物擔體觸媒以乙烯為還原劑催化二氧化硫還原反應之研究”碩士論文,國立成功大學材化學工程研究所,台南,(2001)。
李明哲,“非均勻系觸媒反應的理論與應用”復文書局,(1992)。
李秉傑、邱宏明、王奕凱合譯,“非均勻系催化原理與應用”,渤海堂文化公司印行,二月,(1988)。
林正豐,“奈米二氧化鈦製備及活性測定”碩士論文,國立台灣大學材化學工程研究所,台北,(2001)。
林淑萍,“LaMnO3粉末製備及其性質之研究”碩士論文,國立成功大學材料科學及工程研究所,台南,(1997)。
林麟易,洪彰懋,樓基中,“以Pd觸媒處理排氣中1,3-丁二烯之研究”第十六屆空氣污染控制技術研討會論文集,pp.196-200,(1999)。
張金海編著,“非均勻反應觸媒-特性與實效應用”,台灣復文興業股份有限公司,(1994)。
梁煜申,“鈀觸媒處理焚化廢氣中CO、NO之動力研究”碩士論文,國立中興大學環境工程研究所,台中,(2003)。
陳均衡,“以MnO/Fe2O3觸媒焚化處理丙烯晴之研究”碩士論文,國立成功大學化學工程研究所,台南,(1997)。
陳寶丞,“以溶膠法製備用於一氧化氮還原反應之奈米級觸媒”碩士論文,國立成功大學化學工程研究所,台南,(2001)。
曾庭科,“以MnO/Fe2O3觸媒焚化處理苯乙烯之研究”碩士論文,國立成功大學環境工程研究所,台南,(1998)。
曾庭科,“以氧化錳觸媒焚化處理含氯揮發性有機化合物之研究”博士論文,國立成功大學環境工程研究所,台南,(2002)。
曾惠馨,“活性碳擔持銅觸媒對二氧化硫吸附特性之研究”博士論文,國立中興大學環境工程研究所,台中,(2003)。
楊昇府,“以Cu/Ce觸媒應用於氣相氨氧化及其反應動力之研究”碩士論文,國立中山大學環境工程研究所,高雄,(2001)。
葉志陽,“以溶膠-凝膠法製備二氧化鈦觸媒及其性質鑑定”碩士論文,國立台灣大學化學工程研究所,台北,(2001)。
葉家伶,“以三向觸媒同時處理焚化廢氣中有機污染物、CO及NOx之研究”碩士論文,國立中興大學環境工程研究所,台中,(2002)。
劉鎧仲,“以觸媒還原一氧化氮之研究:氧濃度及促進劑對銅觸媒之效能影響”碩士論文,國立中山大學環境工程研究所,高雄,(2001)。
鄭乙任,“影響觸媒焚化的主要因素及操作維護注意事項之探討”工業污染防制報導,第132期,pp.8-9,(1999)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top