跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀佳慧
研究生(外文):Chia Hui Chi
論文名稱:光質處理對番茄苗株生長與發育之影響
論文名稱(外文):Effects of Light Quality on Seedlings Growth and Development in Tomato
指導教授:李文汕李文汕引用關係
指導教授(外文):Wen Shann Lee
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:72
中文關鍵詞:番茄苗株光質紅光藍光螢光燈光合作用速率氣孔開度
外文關鍵詞:tomato seedlingslight qualityred lightblue lightfluorescent lampphotosynthesis ratestomatal
相關次數:
  • 被引用被引用:8
  • 點閱點閱:1279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本試驗以番茄(Lycopersicon esculentum Mill.)花蓮亞蔬五號為材料,探討不同光質處理對番茄苗株生長與發育之影響,分別以660 nm紅光、435 nm藍光、紅光+藍光及400 ~ 700 nm螢光燈四種光質處理。
試驗結果顯示,苗株生育顯著受到光質處理的影響。紅光和螢光燈處理植株地上部和地下部乾、鮮重、葉面積顯著增加。紅光處理之植株最高,節間明顯抽長,植株呈徒長現象;藍光處理之植株則節間短縮而較矮化;螢光燈處理之植株莖徑最粗;紅光+藍光處理之植株外部形態表現介於紅光處理與藍光植株之間。葉片總葉綠素含量以藍光處理者為最高,紅光處理者為最低。
葉片光合作用速率,於明期開始時,以紅光處理最高,且隨著光照時間的增加,而有上升的趨勢,尤以下午15:00光合作用速率達最高峰,而明期後期即下降。氣孔導度以紅光+藍光處理最高,為0.44 mol m-2 s-1。Rubisco活性以紅光處理者最高,為0.17 nmol RuBP carboxylated mg protein-1 min-1。葉片全可溶性醣含量以紅光和螢光燈處理顯著高於藍光和紅光+藍光處理。葉片澱粉含量以螢光燈處理最高,為9.3 ﹪,藍光處理澱粉含量最低,只有3.05 ﹪。
番茄以螢光燈處理5周後,切片觀察顯示螢光燈及紅光+藍光處理柵狀組織細胞排列緊密,細胞間隙小;紅光處理之柵狀組織細胞細長、排列疏鬆、細胞間隙大;光質處理對番茄莖部第一節間解剖形態的影響,以紅光處理之木質部面積最厚;藍光處理抑制植株伸長,但皮層細胞較其他光質處理增大,有利莖部橫向生長、莖徑增加。
移植溫室後第一花序始花日數以紅光處理最早,依次為螢光燈、紅光+藍光及藍光處理,第一花序始花日數以紅光處理者較藍光處理提早3.9天。

The objective of this study was to investigate the effects of light quality(660 nm red light, 435 nm blue light, red light + blue light, 400~700 nm cool white fluorescent lamp,)on the growth and development of tomato(Lycopersicon esculentum Mill.)seedlings.
Results indicated that light quality had significant effects on growth and development of tomato seedlings. Plants treated with red light or fluorescent lamp had significant increase in leaf area and in dry and fresh weight of the shoots and the roots. The plants in red light treatment had longer internodes and the highest plant height and became seriously stretched, whereas those in blue light treatment were more compact of shorter internodes length. Characteristics of plants in red light + blue light treatment displayed between those in red light and blue light. While fluorescent lamp treatment increased the stem diameter. The chlorophyll a, chlorophyll b and total chlorophyll contents of plants grown in blue light were higher than those grown in red light.
The photosynthesis rates of plants grown in all treatments were increased with time of day and were descended after 15:00 pm, especially those grown in red light. Stomatal conductance was the highest when seedlings exposed to red light + blue light but was the lowest under fluorescent lamp. However the rubisco activity was the highest under red light and was the lowest under blue light. Plants treated with red light had the highest soluble sugar content and followed by fluorescent lamp, red light + blue light and blue light, respectively. However, seedlings grown under fluorescent lamp produced the highest starch content that was 9.3 % at dry weight base.
After treated for 5 weeks, leaf palisade mesophyll tissues arranged closely together under the fluorescent lamp and red light + blue light, intermediate under the blue light, and under the red light. Stem cross-sections of first internodes of tomato plants area of xylem was thickest in red light-grown plants, intermediate in red light + blue light-grown plants, and thinnest in the blue light or fluorescent lamp-grown plants. However, Cortex was the thickest in plants grown under the blue light and significantly thinnest in plants grown under the red light.
Flowered the earliest at 50.1 days after sowing, which was red light, fluorescent lamp and days earlier than that of plant in red light + blue light and blue light respectively.

目錄 i
誌謝 iii
壹、前言 1
貳、前人研究 3
一、 光質處理對植物營養生長之影響 3
二、 光質處理對植物生殖生長之影響 8
三、 光質處理對植物葉片及莖部解剖形態與氣孔開閉之影響 8
參、材料與方法 14
肆、試驗結果 25
一、 光質處理對番茄苗株生長之影響 25
二、 光質處理對番茄葉片光合作用速率、氣孔導度、蒸散速率、細胞間隙CO2濃度及Rubisco酵素活性之影響 34
三、 光質處理對番茄葉片碳水化合物含量之影響 36
四、 光質處理對番茄開花性狀之影響 40
五、 光質處理對番茄葉片、莖部組織解剖型態及氣孔外部形態之影響 40
伍、討論 48
一、 光質處理對番茄苗株生長之影響 48
二、 光質處理對番茄葉片光合作用速率、氣孔導度(開度)、蒸散速率、細胞間隙CO2濃度及Rubisco酵素活性之影響 49
三、 光質處理對番茄葉片碳水化合物含量之影響 51
四、 光質處理對番茄開花性狀之影響 52
五、 光質處理對番茄葉片及莖部組織解剖形態之影響 52
陸、結論 55
柒、中文摘要 56
捌、Abstract 57
玖、參考文獻 59
拾、附錄 68

易希道 。 1974 。 生殖作用 。 最新植物生理學 。 pp.240-241。
柯勇 。 2002 。 溶質運輸 。植物生理學 。 pp.153-166。
許福星 。 1977 。 作物生長分析及應用 。 科學農業 25(11-12): 334-340。
陳宗孟 。 1972 。 植物氣孔運動 。 科學農業 20(7-8):414-420。
黃啟穎 。 2002 。 植物對光照刺激的反應 。 科學農業 50(1-2): 55-68。
農業統計年報 。 2002 。 行政院農業委員會出版。
蔡淑華 。 1975 。 植物組織切片技術綱要 。 茂昌圖書公司 。 72pp 。
蔡溥仁 。 1993 。 鈣離子影響氣孔開閉之可能機制 。 科學農業 41(3-4):85-87。
Aphalo, P. J., and T. Lehto. 1997. Effects of light quality on growth and N accumulation in birch seedlings. Tree Physiol. 17: 125-132.
Assmann, S. M. 1988. Enhancement of stomatal response to blue light by red light reduced intercellular concentrations of CO2, and low vapor pressure differences. Plant Physiol. 87: 226-231.
Assmann, S. M. 1993. Signal transduction in stomatal guard cells. Annu. Rev. Cell Biol. 9: 345-375.
Assmann, S. M., L. Simoncini, and J. I. Schroeder. 1985. Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318: 285-287.
Barreiro, R., J. J. Guiamet, and E. R. Montaldi. 1992. Regulation of the photosynthetic capacity of primary bean leaves by the red: far-red ratio and photosynthetic photon flux density of incident light. Physiol. Plant. 85: 97-101.
Bio-Rad Laboratories. 1976. Bio-Rad protein assay. Tech. Bull. 1051. Bio-Rad Lab. Richmond, CA.
Boardman, N. K. 1977. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 28: 355-377.
Brown, C. S., A. C. Schuerger, and J. C. Sagar. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120: 808-813.
Bula, R. J., R. C. Morrow, T.W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin. 1991. Light emitting diodes as a radiation source for plant. HortScience 26: 203-205.
Chabot, B. F. and J. F. Chabot. 1977. Effect of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia 26: 363-377.
Cosgrove, D. J. 1981. Rapid suppression of growth by blue light. Plant Physiol. 67: 584-590.
Deitzer, G. F., and S. H. Frosch. 1990. Multiple action of far-red light in photoperiodic induction and circadian rhythmicity. Photochem. Photobiol. 52: 173-179.
Deitzer, G. F., R. Hayes, and M. Jabben. 1979. Kinetics and time dependence of the effect of far red light on the photoperiodic induction of flowering in winter barley. Plant Physiol. 64: 1015-1021.
Eisinger, W., T. E. Swartz, R. A. Bogomolni, and L. Taiz. 2000. The ultraviolet action spectrum for stomatal opening in broad bean. Plant Physiol. 122: 99-105.
Eskins, K. 1992. Light-quality effects on Arabidopsis development. Red, blue and far-red regulation of flowering and morphology. Physiol. Plant. 86: 439-444.
Eskins, K., C. Z. Jiang, and R. Shibles. 1991. Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll-and light-harvesting-deficient soybean mutant. Physiol. Plant. 83: 47-53.
Farquhar, G. D., and T. D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annu. Rev. plant physiol. 33: 317-345.
Fischer, R. A. 1968. Stomatal opening: role of potassium uptake by guard cells. Science 160: 784-785.
Goins, G. D., N. C. Yorio, M. M. Sanwo, and C. S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes(LEDs)with and without supplemental blue lighting. J. Expt. Bot. 48: 1407-1413.
Hoenecke, M. E., R. J. Bula, and T. W. Tibbitts. 1992. Importance of ‘blue’ photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27: 427-430.
Humble, G. D. and K. Raschke. 1971. Stomatal opening quantitatively related to potassium transport. Plant Physiol. 48: 447-453.
Inada, K. 1976. Action spectra for photosynthesis in higher plants. Plant and cell Physiol. 17: 355-365.
Jones, J. B., Jr. 1999. Tomato plant culture: In the field, greenhouse, and home garden. CRC Press. Florida, USA.
Kasperbauer, M. J. and D. E. Peaslee. 1973. Morphology and photosynthetic efficiency of tobacco leaves that received end-of-day red or far red light during development. Plant Physiol. 52: 440-442.
Kaufman, L. S. 1993. Transduction of blue-light signals. Plant Physiol. 102: 333-337.
Kuiper, PJC. 1964. Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. Plant Physiol. 39: 952-955.
Lawson T., K. Oxborough, J. I. L. Morison, and N. R. Baker. 2002. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol. 128: 52-62.
Louwerse, W., and WVD. Zweerde. 1977. Photosynthesis, transpiration and leaf morphology of Phaseolus vulgaris and Zea mays grown at different temperatures in artificial and sunlight. Photosynthetica 11: 11-21.
MacRobbie, EAC. and J. Lettau. 1980. Ion content and aperture in“isolated”guard cells of Commelina communis L. J. Membr. Biol. 53: 199-205.
McCree, K. J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 10: 443-453.
McCree, K. J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 9: 191-216.
McNellis, T. W., and X. W. Deng. 1995. Light control of seedling morphogenetic pattern. The Plant Cell 7: 1749-1761.
Mortensen, L. M., and E. Stromme. 1987. Effects of light quality on some greenhouse crops. Sci. Hortic. 33: 27-36.
Norton, C. R., M. E. Norton, and T. Herrington. 1988. Light quality and the control of shoot length in woody ornamental plants grown in vitro. Acta Hort. 227: 453-456.
Ogawa, T., H. Ishikawa, K. Shimada, and K. Shibata. 1978. Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta 142: 61-65.
Okamoto, K., T. Yanagi, and S. Takita. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440: 111-116.
Outlaw, W. H. Jr. 1983. Current concepts on the role of potassium in stomatal movements. Physiol. Plant. 59: 302-311.
Outlaw, W. H. Jr., and J. Manchester. 1979. Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol. 64: 79-82.
Poffenroth, M., D. B. Green, and G. Tallman. 1992. Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light. Plant Physiol. 98: 1460-1471.
Pushnik, J. C., G. W. Miller, V. D., Jolley, J. C. Brown, T. D. Davis, and A. M. Barnes. 1987. Influences of ultra-violet(UV)-blue light radiation on the growth of cotton. II. Photosynthesis, leaf anatomy, and iron reduction. J. Plant Nutr. 10: 2283-2297.
Reid, J. B., O. Hasan, and J. J. Ross. 1990. Internodes length in Pisum. Gibberellins and the response to far-red light. J. Plant Physiol. 137: 46-52.
Runkle, E. S., and R. D. Heins. 2001. Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J. Amer. Soc. Hort. Sci. 126: 275-282.
Saebo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult. 41: 177-185.
Schmidt, W. 1984. Blue light physiology. BioScience 34: 698-704.
Schuerger, A. C., C. S. Brown, and E. C. Stryjewski. 1997. Anatomical features of pepper plants(Capsicum annuum L.)grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Bot. 79: 273-282.
Schwartz, A., and E. Zeiger. 1984. Metabolic energy for stomatal opening. Roles of photophosphorylation and oxidative phosphorylation. Planta 161: 129-136.
Senger, H. 1982. The effect of blue light on plants and microorganisms. Photochem. Photobiol. 35: 911-920.
Sharkey, T. D., and K. Raschke. 1981. Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol. 68: 1170-1174.
Shimazaki, K., M. Lino, and E. Zeiger. 1986. Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. Nature 319: 324-326.
Sims, D. A., and R. W. Pearcy. 1992. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza(Araceae)to a transfer from low to high light. Am. J. Bot. 79: 449-455.
Smith, H. 1982. Light quality, photoperception, and plant strategy. Annu. Rev. Plant Physiol. 33: 481-518.
Smith, H. 1994. Sensing the light environment. In: Kendrick, R. E., and G. H. M. Kronenberg.(Eds). Photomorphogenesis in plants. Second edition. Kluwer Academic Press, Dordrecht pp. 377-416.
Szasz, K., and E. Sz. Barsi. 1971. Stimulatory effect of red light on the polysaccharide accumulation in the leaves. Photosynthetica 5: 71-73.
Taiz, L., and E. Zeiger. 1998. Plant Physiology, 2nd ed. Sinauer Associates, Inc., Publishers. Sunderland, Massachusetts pp. 195-200, 277-278, 517-525.
Talbott, L. D., and E. Zeiger. 1993. Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light. Plant Physiol. 102: 1163-1169.
Talbott, L. D., and E. Zeiger. 1996. Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol. 111: 1051-1057.
Talbott, L. D., and E. Zeiger. 1998. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49: 329-337.
Tallman, G., and E. Zeiger. 1988. Light Quality and Osmoregulation in Vicia Guard cells. Plant Physiol. 88: 887-895.
Tanaka, B. M., T. Takamura, H. Watanabe, M. Endo, T. Yanagi, and K. Okamoto. 1998. In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes(LEDs). J. Hortic. Sci. Biotech. 73: 39-44.
Tennessen, D. J., E. L. Singsaas, and T. D. Sharkey. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosynth. Res. 39: 85-92.
Thomas, B., and H. G. Dickinson. 1979. Evidence for two photoreceptors controlling growth in de-etiolated seedlings. Planta 146: 545-550.
Tibbitts, T. W., D. C. Morgan, and I. J. Warrington. 1983. Growth of Lettuce, Spinach, Mustard, and Wheat plants under four combinations of high-pressure sodium, metal halide, and tungsten halogen lamps at equal PPFD. J. Amer. Soc. Hort. Sci. 108: 622-630.
Tucker, D. J. 1976. Effects of far-red light on the hormonal control of side-shoot growth in the tomato. Ann. Bot. 40: 1033-1042.
Tucker, D. J., and T. A. Mansfield. 1972. Effects of light quality on apical dominance in Xanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins. Planta 102: 140-151.
Usuda, H., S. B. Ku Maurice, and G. E. Edwards. 1985. Influence of light intensity during growth on photosynthesis and activity of several key photosynthetic enzymes in a C4 plant(Zea mays). Physiol. Plant. 63: 65-70.
Voskresenskaya, N. P. 1972. Blue light and carbon metabolism. Annu. Rev. Plant Physiol. 23: 219-234.
Wang, J. Y. 1963. Agricultural Meteorology. Pacemaker Press, Milwaukee, WI.
Warrington, I. J., and K. J. Mitchell. 1976. The influence of blue-and red-biased light spectra on the growth and development of plants. Agr. Meteorol. 16: 247-262.
Wheeler, R. M., C. L. Mackowiak, and J. C. Sager. 1991. Soybean stem growth under high-pressure sodium with supplemental blue lighting. Agron. J. 83: 903-906.
Williams, M. H., and P. B. Green. 1988. Sequential scanning electron microscopy of a growing plant meristem. Protoplasma 147: 77-79.
Willmer, C. M. 1983. Stomata. Longman, London and New York. pp. 51-62.
Yamashita, T. 1952. Influences of potassium supply upon various properties and movement of guard cell. Acta Biol. 1: 51-70.
Yanagi, T., K. Okamoto, and S. Takita. 1996. Effect of blue and red light intensity on photosynthetic rate of strawberry leaves. Acta Hort. 440: 371-376.
Yanagi, T., K. Okamoto, and S. Takita. 1996. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Hort. 440: 117-122.
Yorio, N. C., G. D. Goins, and H. R. Kagie. 2001. Improving spinach, radish and lettuce growth under red light-emitting diodes(LEDs)with blue light supplementation. HortScience 36: 380-383.
Yoshida, S., F. Dpuglosa, C. Janosh, and G. Gwaachai. 1976. Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos, Phillippines pp. 46-49.
Zeiger, E. 1983. The biology of stomatal guard cells. Annu. Rev. Plant Physiol. 34: 441-475.
Zeiger, E., M. Iino, T. Ogawa. 1985. The blue light response of stomata: Pulse Kinetics and some mechanical implications. Photochem. Photobiol. 42: 759-763.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top