跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.187) 您好!臺灣時間:2025/11/22 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳逸凡
研究生(外文):YI-FAN CHEN
論文名稱:氧氣濃度與基板移動速度對室溫成長氧化銦錫薄膜的光/電/微結構特性影響
論文名稱(外文):Dependence of Oxygen Concentration and Substrate Moving Speed on Electrical,Optical and Microstructure Properties of Room Temperature Grown Indium Tin Oxide Films
指導教授:張慎周
指導教授(外文):Shang-Chou Chang
口試委員:林天財蕭育仁
口試委員(外文):TIEN-CHAI LINYU-JEN HSIAO
口試日期:2013-07-04
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:73
中文關鍵詞:氧氣濃度基板移動速度氧化銦錫薄膜連續式直流濺鍍
外文關鍵詞:Oxygen ConcentrationSubstrate Moving SpeedIndium Tin Oxide FilmsIn-line DC Sputter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:865
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
以直流連續式濺鍍室溫成長氧化銦錫薄膜在玻璃基板上,藉由調整不同的氧含量與基板的移動速度以獲得最佳的光電特性。經由實驗結果得知,在固定其它製程參數下,氧含量在1.3%時有最低電阻率為3.6×10-4 Ω-cm,可見光範圍的550nm光穿透率達到95.8 %,因為氧空缺機制會使載子濃度增加以改善電性,但過度的氧空缺也會使得薄膜結構的缺陷增加,造成載子遷移率大幅下降使得電性變差。
另外經由不同基板移動速度的實驗結果發現,最慢的基板移動速度條件1.025 m/min,其薄膜的的載子遷移率最高;電阻率也最低為3.6×10-4 Ω-cm,可見光範圍的平均光穿透率為95.8 %,推測是因為較慢的基板移動速度使得薄膜成長時受連續式濺鍍的側向作用力較小,形成的內應力較少,薄膜缺陷較少所致。

Indium tin oxide (ITO) films were grown by in-line DC sputtering with unheated substrate. The oxygen concentration and substrate moving speed was varied during sputtering. The result indicate ITO films grown at 1.3% oxygen concentration can reach the lowest electrical resistivity 3.6×10-4 Ω-cm among these of the varied oxygen contraction test. In addition , the lowest electrical resistivity and high mobility of ITO films among test of varied substrate moving speed corresponds to low substrate moving speed. It may be related with formed during sputtering. Low substrate moving speed cause low interface stress.
總目錄
頁數
中文摘要--------------------------------------i
英文摘要--------------------------------------ii
致謝------------------------------------------iii
總目錄----------------------------------------iv
圖目錄----------------------------------------vii
表目錄----------------------------------------ix
第一章 緒論------------------------------------1
1.1 研究目的與動機-----------------------------1
1.2 相關文獻回顧-------------------------------8
第二章 理論基礎--------------------------------12
2.1 透明導電膜簡介-----------------------------12
2.1.1 透明導電膜之電性質-----------------------12
2.1.2 透明導電膜之光性質-----------------------14
2.2 ITO材料特性介紹--------------------------18
2.3 電漿原理----------------------------------19
2.4 磁控濺鍍原理-------------------------------25
2.5 薄膜成長原理 ------------------------------27
2.6 薄膜表面型態結構 ---------------------------29
2.7 觸控式螢幕---------------------------------31
第三章 實驗流程與設備----------------------------35
3.1實驗流程------------------------------------35
3.2實驗材料與基本參數---------------------------39
3.3實驗設備------------------------------------40
3.3.1 直流磁控濺鍍機----------------------------40
3.3.2 面電阻抗量測設備(四點探針)-----------------43
3.3.3 霍爾量測設備------------------------------44
3.3.4 分光光譜儀--------------------------------45
3.3.5 X-ray繞射分析----------------------------46
3.3.6 掃描式電子顯微鏡(SEM) ---------------------47
3.3.7 原子力顯微鏡(AFM)--------------------------48
第四章 實驗結果與討論-----------------------------49
4.1 氧含量對薄膜性質的影響------------------------49
4.1.1 實驗結果----------------------------------49
4.1.1.1 薄膜電性分析------------------49
4.1.1.2 薄膜光學分析-------------52
4.1.1.3 薄膜表面形貌-------------53
4.1.1.4 X ray繞射分析---------------------------56
4.1.2 討論---------------------------------------57
4.2基板傳送速度對薄膜性質的影響---------------------60
4.2.1 實驗結果-----------------------------------60
4.2.1.1 薄膜電性分析-------------------60
4.2.1.2 薄膜光學分析--------------62
4.2.1.3 薄膜表面分析--------------64
4.2.2 討論---------------------------------------68
第五章 結論---------------------------------------70
參考文獻------------------------------------------71

圖目錄
頁數
圖1.1 外掛式觸控面板結構示意圖------------------2
圖1.2 OGS觸控面板結構示意圖--------------------2
圖1.3 On Cell觸控面板結構示意圖----------------3
圖1.4 In Cell觸控面板結構示意圖----------------3
圖2.1典型TCO的穿透、反射與吸收光----------------14
圖2.2 BM效應示意圖----------------------------16
圖2.3 氧化銦立方晶系結構-----------------------18
圖2.4 電漿產生的主要硬體設計-------------------19
圖2.5 電漿在不同I-V操作區間的放電情形-----------23
圖2.6 電漿操作在正常放電區時的發光情------------24
圖2.7 磁控濺鍍示意圖--------------------------26
圖2.8 薄膜成長示意圖--------------------------28
圖2.9 Thornton提出氣壓與溫度的濺鍍結構模型------30
圖2.10外掛式Touch Sensor製造示意圖-------------32
圖2.11 On-Cell Touch Sensor製造示意圖---------33
圖2.12 In-Cell Touch Sensor製造示意圖---------34
圖3.1接觸角量測示意圖--------------------------35
圖3.2 實驗流程圖------------------------------38
圖3.3 連續式直流磁控濺鍍機---------------------42
圖3.4 濺鍍機架構圖----------------------------42
圖3.5 四點探針量測示意圖-----------------------43
圖3.6 霍爾電性量測示意圖-----------------------44
圖3.7分光光譜儀-------------------------------45
圖3.8 布拉格繞射原理---------------------------46
圖3.9 原子力顯微鏡示意圖-----------------------48
圖4.1 不同氧含量與表面阻抗關係圖----------------49
圖4.2 不同氧含量的霍爾量測---------------------50
圖4.3 不同氧含量的電阻率-----------------------51
圖4.4 不同氧含量的光穿透率量測------------------52
圖4.5 室溫濺鍍下不同氧含量的ITO SEM表面分析------55
圖4.6 不同氧含量下的XRD繞射分析-----------------56
圖4.7 不同基板動速度的霍爾量測------------------60
圖4.8 不同基板動速度的電阻率--------------------61
圖4.9 不同基板動速度的穿透率量測-----------------63
圖4.10不同基板移動速度沉積的表面粗造度關係圖-------64
圖4.11室溫濺鍍下不同基板移動速度的ITO AFM表面分析--67

表目錄
頁數
表3.1氧含量實驗條件-----------------------------36
表3.2實驗基本參數設定---------------------------37
表4.1不同氧含量的平均光穿透率--------------------52
表4.2不同基板移動速度的平均光穿透率---------------62

[1] 田民波﹐薄膜技術與薄膜材料(初版),P871-P872,2007
[2] 李正中﹐薄膜光學與鍍膜技術(第六版),P292-P312,2009
[3] Walter Umrath﹐(1998). Application of vacuum technology for coating techniques. FUNDAMENTALS OF VACUUM TECHNOLOGY.(pp. 133-134).Germany: LEYBOLD VAKUUM GmbH
[4] M.Bender, W.Seelig, C.Daube, H.Frankenberger, B.Ocker, J.Stollenwerk “ Dependence of oxygen flow on optical and electrical properties of DC-magnetron”, Thin solid Films 326.72-77,1998.
[5] Donghwan Kima,U, Younggun Hana, Jun-Sik Chob, Seok-Keun Kohb,” Low temperature deposition of ITO thin films by ion beam sputtering”, Thin Solid Films 377[378_2000.81]86
[6] C. May, J. StruÈmpfel “ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing”, Thin solid films 351, 48-52, 1999.
[7] Hamid Reza Fallaha, Mohsen Ghasemia, Ali Hassanzadehb, Hadi Stekic “The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature”, Physica B 373 2(2006) 74–279
[8] S. Suzuki, “Internal stress and adhesion of thin ®lms sputtered onto glass by anin-line sputtering system”, Thin Solid Films 351 (1999) 194±197.
[9] 木村浩,渡邊弘,石原哲,鈴木義雄,伊東孝,真空第30卷第6號(1987) 第546頁.
[10] Shang-Chou Changa, Gu-Wei Jian b, Sheng-Han Huangb, To-Sing Lia and Tien-Chai Lina,” Some special phenomena observed from in-line sputtered aluminum doped zinc oxide films”, (IMPACT), 2010 5th International.
[11] 楊明輝, 透明導電膜(第一版),藝軒圖書出版社,2006
[12] Youn J. Kim , Su B. Jin, Sung I. Kim, Yoon S. Choi, In S. Choi, Jeon G. Han “Effect of oxygen flow rate on ITO thin films deposited by facing targets sputtering” , Thin Solid Films 518 (2010) 6241–6244
[13] L. Kerkache, A. Layadi, A. Mosser,“ Effect of oxygen partial pressure on the structural and optical properties of dc sputtered ITO thin films”, Journal of Alloys and Compounds 485 (2009) 46–50
[14] L.M. Wang_, Ying-Jaw Chen, Jyh-Wei Liao, “Characteristics of indium–tin oxide thin films grown on flexible plastic substrates at room temperature”, Journal of Physics and Chemistry of Solids 69 (2008) 527–530
[15] Li-Jian Meng , Jinsong Gao, R.A. Silva, Shigeng Song ,” Effect of the oxygen flow on the properties of ITO thin films deposited by ion
beam assisted deposition (IBAD)”, Thin Solid Films 516 (2008) 5454–5459
[16] Chih-Hao Liang , Xiaoding Qi “Indium-tin-oxide thin films deposited on polyethylene-terephthalate substrates by substrate-biased RF magnetron sputtering”, Surface & Coatings Technology (2012)
[17] Boen Houng,Adam Wang, “Characterization of indium tin oxide films by RF-assisted DC magnetron sputtering”, Applied Surface Science 258 (2012) 5593– 5598
[18] Chun-Ku Chen, “Modelling the discharge region of a microwave generated hydrogen plasma”,J. Phys. D: Appl. Phy.32(1999) 688-689.
[19] B. Szyszka,”Development of new transparent conductors and device applications utilizing a multidisciplinary approach” Thin Solid Films 518 (2010) 3109-3114.
[20] P. Nunes, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering “Vacuum 64 (2002) 293-297.
[21] M. Buchanan, J.B. Webb, D.F. Williams, Appl. Phys. Lett. 37 (2)
(1980) 213.
[22] H. Odaka, Japanese Journal of Applied Physics, 40, 3231(2001). Copyright 2001, The Japan Society
[23] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J.
Stollenwerk. Thin Solid Films 326 (1998) 72–77.
[24] Chaun Gi Choi, Kwangsoo No, Won-Jae Lee, Ho-Gi Kim, Soo Ok Jung, Won Jong Lee,Wook Sung Kim, Se Jong Kim, Cheon Yoon, Thin Solid Films 258 (1995) 274-278
[25] S.T. Tan,B. J. Chen, X. W. Sun, W. J. Fan, “Blueshift of optical band gap in ZnO thin film grown by metal-organic chemical-vapor deposition”, J. Appl. Phy.(2005) 98,013505.
[26] S.V.N. Pammi , Anupama Chanda , Nak-Jin Seong , Soon-Gil Yoon,” Growth of high-quality ITO thin films at low temperature by tuning the oxygen flow rate using the nano-cluster deposition (NCD) technique”, Chemical Physics Letters 490 (2010) 234–237
[27] Hai-Ning Cui , V. Teixeira , Li-Jian Meng , R. Martins , E. Fortunato ,” Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature”, Vacuum 82 (2008) 1507–1511
[28] Hamid Reza Fallah, Mohsen Ghasemi, Ali Hassanzadeh, Hadi Steki,“The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature”, Physica B 373 (2006) 274–279
[29] K. Ishibashi and Y. Shookawa, Proc. Of the 3rd ISSP, Tokyo (1995) 423.
[30] I. Hamberg, Physical Review B, 30, 3240(1984), American Institute of Physics
[31] Thin Solid Films, 102, Chopra, Maji and Pandya, Transparent Conductors – A Status Review, 1-46, Copyright(1983), Elsevier

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top