|
1.Paymaster, J.C., Cancer of the buccal mucosa; a clinical study of 650 cases in Indian patients. Cancer, 1956. 9(3): p. 431-5. 2.Pillai, R., P. Balaram, and K.S. Reddiar, Pathogenesis of oral submucous fibrosis. Relationship to risk factors associated with oral cancer. Cancer, 1992. 69(8): p. 2011-20. 3.Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3. 4.Scully, C., Oral precancer: preventive and medical approaches to management. Eur J Cancer B Oral Oncol, 1995. 31B(1): p. 16-26. 5.Smith, M.L. and A.J. Fornace, Jr., Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res, 1996. 340(2-3): p. 109-24. 6.Sherr, C.J., G1 phase progression: cycling on cue. Cell, 1994. 79(4): p. 551-5. 7.Draetta, G.F., Mammalian G1 cyclins. Curr Opin Cell Biol, 1994. 6(6): p. 842-6. 8.Hunter, T. and J. Pines, Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994. 79(4): p. 573-82. 9.Brooks, G., R.A. Poolman, and J.M. Li, Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc Res, 1998. 39(2): p. 301-11. 10.King, R.W., P.K. Jackson, and M.W. Kirschner, Mitosis in transition. Cell, 1994. 79(4): p. 563-71. 11.Reed, S.I., et al., G1 control in mammalian cells. J Cell Sci Suppl, 1994. 18: p. 69-73. 12.Tyson, J.J., et al., Chemical kinetic theory: understanding cell-cycle regulation. Trends Biochem Sci, 1996. 21(3): p. 89-96. 13.McGill, C.J. and G. Brooks, Cell cycle control mechanisms and their role in cardiac growth. Cardiovasc Res, 1995. 30(4): p. 557-69. 14.Sherr, C.J. and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995. 9(10): p. 1149-63. 15.Martinez, A.M., et al., Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. Embo J, 1997. 16(2): p. 343-54. 16.Li, J.M. and G. Brooks, Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy? Eur Heart J, 1999. 20(6): p. 406-20. 17.Pines, J., Cyclin-dependent kinase inhibitors: the age of crystals. Biochim Biophys Acta, 1997. 1332(1): p. M39-42. 18.Guan, K.L., et al., Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev, 1994. 8(24): p. 2939-52. 19.Lukas, J., et al., Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature, 1995. 375(6531): p. 503-6. 20.Medema, R.H., et al., Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci U S A, 1995. 92(14): p. 6289-93. 21.Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57. 22.Lockshin, R.A. and J. Beaulaton, Programmed cell death. Life Sci, 1974. 15(9): p. 1549-65. 23.Zakeri, Z. and R.A. Lockshin, Physiological cell death during development and its relationship to aging. Ann N Y Acad Sci, 1994. 719: p. 212-29. 24.Ishizaki, Y., [Physiological functions of programmed cell death]. Seikagaku, 1998. 70(5): p. 365-70. 25.Hengartner, M.O., The biochemistry of apoptosis. Nature, 2000. 407(6805): p. 770-6. 26.Afford, S. and S. Randhawa, Apoptosis. Mol Pathol, 2000. 53(2): p. 55-63. 27.Searle, J., J.F. Kerr, and C.J. Bishop, Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu, 1982. 17 Pt 2: p. 229-59. 28.Matsuda, H., et al., Apoptosis and necrosis occurring during different stages of primary and metastatic tumor growth of a rat mammary adenocarcinoma. Anticancer Res, 1996. 16(3A): p. 1117-21. 29.Nicotera, P., M. Leist, and E. Ferrando-May, Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp, 1999. 66: p. 69-73. 30.Schmitz, I., S. Kirchhoff, and P.H. Krammer, Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol, 2000. 32(11-12): p. 1123-36. 31.Igney, F.H. and P.H. Krammer, Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer, 2002. 2(4): p. 277-88. 32.Shi, Y., Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell, 2002. 9(3): p. 459-70. 33.Krammer, P.H., CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol, 1999. 71: p. 163-210. 34.Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57. 35.Zou, H., et al., An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem, 1999. 274(17): p. 11549-56. 36.Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6. 37.Lundberg, A.S. and R.A. Weinberg, Control of the cell cycle and apoptosis. Eur J Cancer, 1999. 35(14): p. 1886-94. 38.Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999. 13(15): p. 1899-911. 39.Yang, F., et al., Preparative isolation and purification of hydroxyanthraquinones from Rheum officinale Baill by high-speed counter-current chromatography using pH-modulated stepwise elution. J Chromatogr A, 1999. 858(1): p. 103-7. 40.Gerdes, J., et al., Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol, 1984. 133(4): p. 1710-5. 41.du Manoir, S., et al., Ki-67 labeling in postmitotic cells defines different Ki-67 pathways within the 2c compartment. Cytometry, 1991. 12(5): p. 455-63. 42.Tang, X.H., et al., Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res, 2004. 10(1 Pt 1): p. 301-13. 43.Salley, J.J., Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res, 1954. 33(2): p. 253-62. 44.Morris, A.L., Factors influencing experimental carcinogensis in the hamster cheek pouch. J Dent Res, 1961. 40: p. 3-15. 45.Dipple, A., et al., Evidence that binding of 7,12-dimethylbenz(a)anthracene to DNA in mouse embryo cell cultures results in extensive substitution of both adenine and guanine residues. Cancer Res, 1983. 43(9): p. 4132-5. 46.Shklar, G., E. Eisenberg, and E. Flynn, Immunoenhancing agents and experimental leukoplakia and carcinoma of the hamster buccal pouch. Prog Exp Tumor Res, 1979. 24: p. 269-82. 47.Bigger, C.A., et al., Products of binding of 7,12-dimethylbenz(a)anthracene to DNA in mouse skin. Cancer Res, 1983. 43(12 Pt 1): p. 5647-51. 48.Daniel, F.B. and N.J. Joyce, DNA adduct formation by 7,12-dimethylbenz[a]anthracene and its noncarcinogenic 2-fluoro analogue in female Sprague-Dawley rats. J Natl Cancer Inst, 1983. 70(1): p. 111-8. 49.Joyce, N.J. and F.B. Daniel, 7, 12-dimethylbenz [a] anthracene-deoxyribonucleoside adduct formation in vivo: evidence for the formation and binding of a mono-hydroxymethyl-DMBA metabolite to rat liver DNA. Carcinogenesis, 1982. 3(3): p. 297-301. 50.Tomimori, T., Y. Miyaichi, and H. Kizu, [On the flavonoid constituents from the roots of Scutellaria baicalensis Georgi. I]. Yakugaku Zasshi, 1982. 102(4): p. 388-91. 51.Okamura, N., et al., Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, berberine, coptisine, palmatine, jateorrhizine and glycyrrhizin in Kampo medicines by ion-pair high-performance liquid chromatography. Biol Pharm Bull, 1999. 22(10): p. 1015-21. 52.Ye, F., et al., Anticancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med, 2002. 8(5): p. 567-72. 53.Kim, H., T.G. Peterson, and S. Barnes, Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am J Clin Nutr, 1998. 68(6 Suppl): p. 1418S-1425S. 54.Lee, H.P., et al., Risk factors for breast cancer by age and menopausal status: a case-control study in Singapore. Cancer Causes Control, 1992. 3(4): p. 313-22. 55.Liu, M., et al., Antioxidant action via p53-mediated apoptosis. Cancer Res, 1998. 58(8): p. 1723-9. 56.Zhang, D.Y., et al., Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Res, 2003. 63(14): p. 4037-43. 57.Ciesielska, E., A. Gwardys, and D. Metodiewa, Anticancer, antiradical and antioxidative actions of novel Antoksyd S and its major components, baicalin and baicalein. Anticancer Res, 2002. 22(5): p. 2885-91. 58.Liu, J.J., et al., Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int J Cancer, 2003. 106(4): p. 559-65. 59.Po, L.S., et al., Baicalein and genistein display differential actions on estrogen receptor (ER) transactivation and apoptosis in MCF-7 cells. Cancer Lett, 2002. 187(1-2): p. 33-40. 60.So, F.V., et al., Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett, 1997. 112(2): p. 127-33. 61.Lee, H.Z., et al., Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res, 2005. 25(2A): p. 959-64. 62.Chen, C.H., et al., Baicalein, a novel apoptotic agent for hepatoma cell lines: a potential medicine for hepatoma. Nutr Cancer, 2000. 38(2): p. 287-95. 63.Chan, F.L., et al., Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett, 2000. 160(2): p. 219-28. 64.Scheck, A.C., et al., Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Complement Altern Med, 2006. 6(27): p. 27. 65.Ye, F., et al., Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein. Cancer Lett, 2004. 211(1): p. 39-46. 66.Leung, H.W., et al., Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis. Food Chem Toxicol, 2007. 45(3): p. 403-11. 67.Lee, D.H., et al., Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol, 2008. 75(10): p. 2020-33. 68.Vairaktaris, E., et al., The hamster model of sequential oral oncogenesis. Oral Oncol, 2008. 44(4): p. 315-24. 69.Gimenez-Conti, I.B., et al., p53 alterations in chemically induced hamster cheek-pouch lesions. Mol Carcinog, 1996. 16(4): p. 197-202. 70.Vidjaya Letchoumy, P., et al., Pretreatment with black tea polyphenols modulates xenobiotic-metabolizing enzymes in an experimental oral carcinogenesis model. Oncol Res, 2008. 17(2): p. 75-85. 71.Wang, W.C., et al., The therapeutic effect of fractionated radiation on DMBA-induced hamster buccal pouch squamous cell carcinomas. Oral Oncol, 2008. 15: p. 15. 72.Cheng, H.C., et al., Carotenoids suppress proliferating cell nuclear antigen and cyclin D1 expression in oral carcinogenic models. J Nutr Biochem, 2007. 18(10): p. 667-75. 73.Letchoumy, P.V., et al., Comparative evaluation of antiproliferative, antiangiogenic and apoptosis inducing potential of black tea polyphenols in the hamster buccal pouch carcinogenesis model. J Carcinog, 2007. 6(19): p. 19. 74.Lin, S.C., et al., Establishment and characterization of a cell line (HCDB-1) derived from a hamster buccal pouch carcinoma induced by DMBA and Taiwanese betel quid extract. Proc Natl Sci Counc Repub China B, 2000. 24(3): p. 129-35. 75.Chang, M.C., et al., Cell-mediated immunity and head and neck cancer: with special emphasis on betel quid chewing habit. Oral Oncol, 2005. 41(8): p. 757-75.
|