跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉雅榕
研究生(外文):Ya-Jung Liu
論文名稱:貝加因在口腔癌細胞及倉鼠口腔癌模式之作用機制
論文名稱(外文):The mechanism of Baicalein on Oral Cancer Cells andDMBA-induced Hamster Buccal Pouch Carcinogenesis Model
指導教授:鄭雅興
指導教授(外文):Ya-Hsin Cheng
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:口腔癌細胞倉鼠
外文關鍵詞:BaicaleinHamsteroral cancer cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Baicalein 是從中草藥-黃芩的根部中萃取出來的成分之ㄧ,具有很強的生物活性。許多文獻指出,在肺癌、乳癌的細胞中可以發現Baicalein 具有抗發炎、抑制細胞生長、促進凋亡的作用。故本篇研究的目的是運用細胞及動物模式,測試是否Baicalein 對口腔癌也有治療的效果。
在細胞模式中,我們將不同濃度的Baicalein與口腔癌細胞株HSC-3 共同培養。藉由MTT assay,我們發現Baicalein濃度在14~112 μg/ml,有抑制細胞生長的情況;且在IC50 在藥物作用48小時大約是56 μg/ml。而流式細胞儀的分析結果顯示,隨著藥物濃度的上升,細胞週期顯著的停滯在S期。西方墨點法可以發現Bax、PARP的表現量有逐漸上升的趨勢,Bcl-2表現量則相反。細胞免疫染色法可以看到隨著藥物劑量的加大,ki67、Bcl-2有下降的趨勢; Bax的表現則有上升的趨勢 。綜合以上結果顯示,Baicalein 的確具有抑制癌細胞生長的作用,進而促進走向凋亡的路徑。
在動物實驗中,將所有實驗用倉鼠大致分為兩組進行:單純以0.5%DMBA (7,12 –dimethylbenzanthracene) 誘導的組別,分別於八週、十週、十二週時犧牲。另一組則為0.5% DMBA誘導並同時給予不同濃度的Baicalein,於飼養至十二週後犧牲。DMBA 的給予方式是用2號的水彩筆於每週一、三、五,各塗抹口頰兩側的囊袋,各繞八圈為主。而有Baicalein組別,則以同樣方式於每週二、四、六塗抹不同濃度的Baicalein (7~28 mg/ml)。根據組織蘇木紫-伊紅染色法 (Hematoxylin and Eosin stain;H&E stain) 的結果顯示,大約在12週時,單純塗抹DMBA的組別全部隻數的倉鼠可以完全達到carcinoma的階段。而同時給予不同濃度的Baicalein (7~28 mg/ml)的組別,由組織免疫染色法 (Immunohistochemistry stain;IHC)的檢查發現,其與細胞增生的蛋白質PCNA,及與細胞凋亡的指標蛋白質Bax、Bcl-2的表現量與正常倉鼠口腔上皮的同種蛋白質表現沒有顯著的變化。
綜合以上結果,我們可以推測Baicalein 在HSC-3 cell line 中可以抑制細胞的生長,促進凋亡;但在動物試驗中,至目前使用的最大劑量28 mg/ml,似乎無法看到顯著的抑制腫瘤生長的情況。
Baicalein ( 5,6,7-trihydroxyflavone ) is a bioactive flavone isolated from the root of Scutellaria baicalensis Georgi ( Huang Qin ). It has been used as an anti-inflammatory agent in Chinese herb medicine. Recently, Baicalein was found to have anti-proliferative and apoptotic effects on prostate, lung and breast cancer cells. The objective of our study is to investigate the possible chemopreventive effect of Baicalein on both human oral cancer cells ( in vitro ) and oral carcinogenesis animal model ( in vivo ).
By MTT test, we demonstrated that Baicalein ( ranging from 14 to 112 μg/ml ) inhibited cell proliferation in a does-dependent manner in human oral caner cell line, HSC-3. The IC50 at 48hr of Baicalein treatment was 56μg/ml. Cell cycle analysis showed an increased percentage of cells in S-phase and a decreased percentage of G1 phase after incubation with 28 μg/ml of Baicalein for 48 hrs. These results indicated that Baicalein has antiproliferative effect on human oral cancer cells via arresting cells at S-phase.
We further investigated the antiproliferative effect of Baicalin on the DMBA-induced hamster buccal pouch carcinogenesis model. Male Syrian hamsters were painted with DMBA ( 0.5% in mineral oil ) in both sides of buccal pouch 3 times per week for 12 week, and the hamsters were sacrificed. Various concentrations of Baicalein ( 7, 14 or 28mg/ml ) were also applied to the buccal pouch, 3 times per week during the days when DMBA were painted. At the end of the 12 wks, the buccal pouch was dissected and the numbers and the sizes of the tumors were measured before histological examination by H&E. All the hamsters, with DMBA alone or the combination of DMBA + Baicalein, showed squamous cell carcinoma after 12 wks experimental period. Decreased tumor sizes were only observed in hamsters treated with 28mg/ml
Baicalein . The cell proliferation marker PCNA 、apoptosis marker Bcl-2 were not decreased in the group of the 28mg/ml Baicalein treatment by IHC. Another apoptosis marker Bax was not increased in the group of the 28ug/ml Baicalein treatment. All of these results suggested that Baicalein had antiproliferative effect only in vitro.
總目錄
中文摘要 VI
英文摘要 IX
第一章、 前言 1
第一節、 口腔癌 1
第二節、 口腔癌的研究模式: in vitro 4
第三節、 口腔癌的研究模式: in vivo 17
第四節、 中國傳統藥物在癌症治療的應用 18
第五節、 研究目的 21
第二章、 材料與方法 22
第一節、 實驗材料 22
A. 儀器 22
B. 材料 23
C. 試劑 23
第二節、 實驗方法 26
1. 動物飼養 26
2. 組織冷凍切片 26
3. 組織染色(Hematoxylin & Eosin Stain ; H&E stain ) 27
4. 免疫組織染色(Immunohistochemistry stain;IHC) 27
5. 免疫細胞染色(Immunocytochemistry stain;ICC) 28
6. 細胞培養 29
7. 細胞存活率試驗 (MTT assay) 29
8. 細胞週期試驗(Cell cycle analysis) 30
9. 西方墨點法(Western blot)偵測相關蛋白質變化 32
第三節、 統計方法 33
第三章、 實驗設計 35
第四章、 實驗結果 37
?? In vivo 37
1. Baicalein 對DMBA誘導的倉鼠之飲食及體重的影響 37
2. Baicalein 對DMBA誘導的倉鼠之腫瘤大小及癌化階段之影響 37
3. Baicalein 對DMBA誘導的倉鼠口腔癌細胞增生及細胞凋亡等相關的蛋白質之影響 39
?? In vitro 39
1. Baicalein對HSC-3細胞存活率的影響 39
2. Baicalein 對HSC-3細胞週期之影響 40
3. Baicalein 誘導HSC-3細胞凋亡與相關蛋白之表現 41
4. Baicalein 對HSC-3細胞之細胞免疫染色結果 42
第五章、 結論 43
第六章、討論 45
第七章、 未來發展方向 50
第八章、結果圖表目錄 51
第九章、 Appendix 69
第十章、 參考文獻 71

結果表目錄
Table 1、在DMBA誘導的倉鼠動物模式中Baicalein 對於腫瘤大小 53
Table 2、以DMBA誘導的倉鼠動物模式中其癌化分級結果 54
Table 3、Baicalein 對於以DMBA誘導的倉鼠動物模式中其癌化階段 55

結果圖目錄
圖一、Baicalein 對於體重及飲食量的影響 52
圖二、以DMBA誘導倉鼠口腔上皮細胞癌化過程,不同組別的組織 56
圖三、以DMBA誘導倉鼠口腔上皮細胞癌化過程(a)及Baicalein對 57
圖四、DMBA誘導及 Baicalein對 (a)PCNA、(b)Bax、(c)Bcl-2 60
圖五、不同濃度的Baicalein 對於口腔癌細胞株HSC-3在48小時的存活率 61
圖六Baicalein 對於口腔癌細胞株HSC-3在24、48、72小時的存活率 62
圖七、不同濃度的Baicalein 對於口腔癌細胞株HSC-3在48小時的細胞週期影響 63
圖八、不同濃度的Baicalein 對於口腔癌細胞株HSC-3在48及72 64
圖九、不同濃度的Baicalein 48小時的作用在HSC-3與細胞凋 65
圖十、Baicalein 作用在HSC-3細胞48小時後,細胞增生的指標 68
1.Paymaster, J.C., Cancer of the buccal mucosa; a clinical study of 650 cases in Indian patients. Cancer, 1956. 9(3): p. 431-5.
2.Pillai, R., P. Balaram, and K.S. Reddiar, Pathogenesis of oral submucous fibrosis. Relationship to risk factors associated with oral cancer. Cancer, 1992. 69(8): p. 2011-20.
3.Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3.
4.Scully, C., Oral precancer: preventive and medical approaches to management. Eur J Cancer B Oral Oncol, 1995. 31B(1): p. 16-26.
5.Smith, M.L. and A.J. Fornace, Jr., Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res, 1996. 340(2-3): p. 109-24.
6.Sherr, C.J., G1 phase progression: cycling on cue. Cell, 1994. 79(4): p. 551-5.
7.Draetta, G.F., Mammalian G1 cyclins. Curr Opin Cell Biol, 1994. 6(6): p. 842-6.
8.Hunter, T. and J. Pines, Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994. 79(4): p. 573-82.
9.Brooks, G., R.A. Poolman, and J.M. Li, Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc Res, 1998. 39(2): p. 301-11.
10.King, R.W., P.K. Jackson, and M.W. Kirschner, Mitosis in transition. Cell, 1994. 79(4): p. 563-71.
11.Reed, S.I., et al., G1 control in mammalian cells. J Cell Sci Suppl, 1994. 18: p. 69-73.
12.Tyson, J.J., et al., Chemical kinetic theory: understanding cell-cycle regulation. Trends Biochem Sci, 1996. 21(3): p. 89-96.
13.McGill, C.J. and G. Brooks, Cell cycle control mechanisms and their role in cardiac growth. Cardiovasc Res, 1995. 30(4): p. 557-69.
14.Sherr, C.J. and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995. 9(10): p. 1149-63.
15.Martinez, A.M., et al., Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. Embo J, 1997. 16(2): p. 343-54.
16.Li, J.M. and G. Brooks, Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy? Eur Heart J, 1999. 20(6): p. 406-20.
17.Pines, J., Cyclin-dependent kinase inhibitors: the age of crystals. Biochim Biophys Acta, 1997. 1332(1): p. M39-42.
18.Guan, K.L., et al., Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev, 1994. 8(24): p. 2939-52.
19.Lukas, J., et al., Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature, 1995. 375(6531): p. 503-6.
20.Medema, R.H., et al., Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci U S A, 1995. 92(14): p. 6289-93.
21.Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
22.Lockshin, R.A. and J. Beaulaton, Programmed cell death. Life Sci, 1974. 15(9): p. 1549-65.
23.Zakeri, Z. and R.A. Lockshin, Physiological cell death during development and its relationship to aging. Ann N Y Acad Sci, 1994. 719: p. 212-29.
24.Ishizaki, Y., [Physiological functions of programmed cell death]. Seikagaku, 1998. 70(5): p. 365-70.
25.Hengartner, M.O., The biochemistry of apoptosis. Nature, 2000. 407(6805): p. 770-6.
26.Afford, S. and S. Randhawa, Apoptosis. Mol Pathol, 2000. 53(2): p. 55-63.
27.Searle, J., J.F. Kerr, and C.J. Bishop, Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu, 1982. 17 Pt 2: p. 229-59.
28.Matsuda, H., et al., Apoptosis and necrosis occurring during different stages of primary and metastatic tumor growth of a rat mammary adenocarcinoma. Anticancer Res, 1996. 16(3A): p. 1117-21.
29.Nicotera, P., M. Leist, and E. Ferrando-May, Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp, 1999. 66: p. 69-73.
30.Schmitz, I., S. Kirchhoff, and P.H. Krammer, Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol, 2000. 32(11-12): p. 1123-36.
31.Igney, F.H. and P.H. Krammer, Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer, 2002. 2(4): p. 277-88.
32.Shi, Y., Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell, 2002. 9(3): p. 459-70.
33.Krammer, P.H., CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol, 1999. 71: p. 163-210.
34.Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57.
35.Zou, H., et al., An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem, 1999. 274(17): p. 11549-56.
36.Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6.
37.Lundberg, A.S. and R.A. Weinberg, Control of the cell cycle and apoptosis. Eur J Cancer, 1999. 35(14): p. 1886-94.
38.Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999. 13(15): p. 1899-911.
39.Yang, F., et al., Preparative isolation and purification of hydroxyanthraquinones from Rheum officinale Baill by high-speed counter-current chromatography using pH-modulated stepwise elution. J Chromatogr A, 1999. 858(1): p. 103-7.
40.Gerdes, J., et al., Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol, 1984. 133(4): p. 1710-5.
41.du Manoir, S., et al., Ki-67 labeling in postmitotic cells defines different Ki-67 pathways within the 2c compartment. Cytometry, 1991. 12(5): p. 455-63.
42.Tang, X.H., et al., Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res, 2004. 10(1 Pt 1): p. 301-13.
43.Salley, J.J., Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res, 1954. 33(2): p. 253-62.
44.Morris, A.L., Factors influencing experimental carcinogensis in the hamster cheek pouch. J Dent Res, 1961. 40: p. 3-15.
45.Dipple, A., et al., Evidence that binding of 7,12-dimethylbenz(a)anthracene to DNA in mouse embryo cell cultures results in extensive substitution of both adenine and guanine residues. Cancer Res, 1983. 43(9): p. 4132-5.
46.Shklar, G., E. Eisenberg, and E. Flynn, Immunoenhancing agents and experimental leukoplakia and carcinoma of the hamster buccal pouch. Prog Exp Tumor Res, 1979. 24: p. 269-82.
47.Bigger, C.A., et al., Products of binding of 7,12-dimethylbenz(a)anthracene to DNA in mouse skin. Cancer Res, 1983. 43(12 Pt 1): p. 5647-51.
48.Daniel, F.B. and N.J. Joyce, DNA adduct formation by 7,12-dimethylbenz[a]anthracene and its noncarcinogenic 2-fluoro analogue in female Sprague-Dawley rats. J Natl Cancer Inst, 1983. 70(1): p. 111-8.
49.Joyce, N.J. and F.B. Daniel, 7, 12-dimethylbenz [a] anthracene-deoxyribonucleoside adduct formation in vivo: evidence for the formation and binding of a mono-hydroxymethyl-DMBA metabolite to rat liver DNA. Carcinogenesis, 1982. 3(3): p. 297-301.
50.Tomimori, T., Y. Miyaichi, and H. Kizu, [On the flavonoid constituents from the roots of Scutellaria baicalensis Georgi. I]. Yakugaku Zasshi, 1982. 102(4): p. 388-91.
51.Okamura, N., et al., Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, berberine, coptisine, palmatine, jateorrhizine and glycyrrhizin in Kampo medicines by ion-pair high-performance liquid chromatography. Biol Pharm Bull, 1999. 22(10): p. 1015-21.
52.Ye, F., et al., Anticancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med, 2002. 8(5): p. 567-72.
53.Kim, H., T.G. Peterson, and S. Barnes, Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am J Clin Nutr, 1998. 68(6 Suppl): p. 1418S-1425S.
54.Lee, H.P., et al., Risk factors for breast cancer by age and menopausal status: a case-control study in Singapore. Cancer Causes Control, 1992. 3(4): p. 313-22.
55.Liu, M., et al., Antioxidant action via p53-mediated apoptosis. Cancer Res, 1998. 58(8): p. 1723-9.
56.Zhang, D.Y., et al., Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Res, 2003. 63(14): p. 4037-43.
57.Ciesielska, E., A. Gwardys, and D. Metodiewa, Anticancer, antiradical and antioxidative actions of novel Antoksyd S and its major components, baicalin and baicalein. Anticancer Res, 2002. 22(5): p. 2885-91.
58.Liu, J.J., et al., Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int J Cancer, 2003. 106(4): p. 559-65.
59.Po, L.S., et al., Baicalein and genistein display differential actions on estrogen receptor (ER) transactivation and apoptosis in MCF-7 cells. Cancer Lett, 2002. 187(1-2): p. 33-40.
60.So, F.V., et al., Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett, 1997. 112(2): p. 127-33.
61.Lee, H.Z., et al., Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res, 2005. 25(2A): p. 959-64.
62.Chen, C.H., et al., Baicalein, a novel apoptotic agent for hepatoma cell lines: a potential medicine for hepatoma. Nutr Cancer, 2000. 38(2): p. 287-95.
63.Chan, F.L., et al., Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett, 2000. 160(2): p. 219-28.
64.Scheck, A.C., et al., Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Complement Altern Med, 2006. 6(27): p. 27.
65.Ye, F., et al., Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein. Cancer Lett, 2004. 211(1): p. 39-46.
66.Leung, H.W., et al., Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis. Food Chem Toxicol, 2007. 45(3): p. 403-11.
67.Lee, D.H., et al., Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol, 2008. 75(10): p. 2020-33.
68.Vairaktaris, E., et al., The hamster model of sequential oral oncogenesis. Oral Oncol, 2008. 44(4): p. 315-24.
69.Gimenez-Conti, I.B., et al., p53 alterations in chemically induced hamster cheek-pouch lesions. Mol Carcinog, 1996. 16(4): p. 197-202.
70.Vidjaya Letchoumy, P., et al., Pretreatment with black tea polyphenols modulates xenobiotic-metabolizing enzymes in an experimental oral carcinogenesis model. Oncol Res, 2008. 17(2): p. 75-85.
71.Wang, W.C., et al., The therapeutic effect of fractionated radiation on DMBA-induced hamster buccal pouch squamous cell carcinomas. Oral Oncol, 2008. 15: p. 15.
72.Cheng, H.C., et al., Carotenoids suppress proliferating cell nuclear antigen and cyclin D1 expression in oral carcinogenic models. J Nutr Biochem, 2007. 18(10): p. 667-75.
73.Letchoumy, P.V., et al., Comparative evaluation of antiproliferative, antiangiogenic and apoptosis inducing potential of black tea polyphenols in the hamster buccal pouch carcinogenesis model. J Carcinog, 2007. 6(19): p. 19.
74.Lin, S.C., et al., Establishment and characterization of a cell line (HCDB-1) derived from a hamster buccal pouch carcinoma induced by DMBA and Taiwanese betel quid extract. Proc Natl Sci Counc Repub China B, 2000. 24(3): p. 129-35.
75.Chang, M.C., et al., Cell-mediated immunity and head and neck cancer: with special emphasis on betel quid chewing habit. Oral Oncol, 2005. 41(8): p. 757-75.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top