|
[1] O. Barzilay, V.J. Brailovsky, On domain knowledge and feature selection using a support vector machine. Pattern Recognition Letters 20 (1999) 475-484. [2] V.J. Brailovsky, O. Barzilay, R. Shahave, On global, local, mixed and neighborhood kernels for support vector machines, Pattern Recognition Letters 20 (1999) 1183-1190. [3]C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery 2 (2) (1998) 121-167. [4] C.C. Chang, C.W. Hsu, C.J. Lin, The analysis of decomposition methods for support vector machines, IEEE Transactions on Neural Networks 11 (4) (2000) 1003-1008. [5] H. C. Chen, Y. L. Lin, Y.J. Sun, and J. G. Hsieh, (2002). Modified Rosenblatt’s perceptron algorithm and Novikoff’s Theorem. Proceeding of 2002 IEEE International Conference on Industrial Technology, Bangkok, Thailand, pp. 1282-1284. [6] C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20 (1995) 273-297. [7] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000. [8] F. Girosi, An equivalence between sparse approximation and support vector machines, Neural Computation 10 (6) (1998) 1455-1480. [9] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, New Jersey, 1999. [10] M.A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, J. Platt, Trends and controversies-support vector machines, IEEE Intelligent Systems & their Applications 13 (1998) 18-28. [11] R. Herbrich, Learning Kernel Classifiers: Theory and Algorithms, MIT Press, Cambridge, 2002. [12] V. Kecman, Learning and Soft Computing, Cambridge: MIT Press, 2001. [13] J. Nocdal, S. J. Wright, Numerical Optimization. Springer, New York, 1957. [14] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review 65 (6) (1958) 386-408. [15] Rangarajan, K.Sundaram, A First Course in Optimization Theory. Cambridge University Press, Cambridge, United Kingdom. 1996. [16] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, 2002. [17] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995. [18] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, K.R. Müller, Engineering support vector machine kernels that recognize translation initiation sites, Bioinformatics 16 (9) (2000) 799-807.
|