跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉茂生
研究生(外文):Mau-Sheng Liu
論文名稱:歐氏範數空間裡線性二元可分離性之充分必要條件
論文名稱(外文):Necessary and sufficient condition for the linear binary separability in the Euclidean normed space
指導教授:孫永莒
指導教授(外文):Yeoung-Jeu Sun
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:51
中文關鍵詞:學習理論型樣識別二元分類法充分必要條件
外文關鍵詞:Theory of learningBinary classificationPattern recognitionNecessary and sufficient condition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文考量標準二元分類法的問題。在歐氏範數空間中,吾人將提出保證數據線性二元可分離之等價判別準則。針對線性二元可分離之數據,提供一個保證可正確分類之超平面。此外,我們提出一個簡易數值疊代方法來測試數據的線性二元可分離性。最後,吾人將提供一數值範例來說明主要定理之可行性。
The classical binary classification problem is considered in this thesis. Necessary and sufficient condition is proposed to guarantee the linear binary separability of the training data in the Euclidean normed space. A suitable hyperplane that correctly classifies the training data is also constructed provided that the necessary and sufficient condition is satisfied. Based on the main result, we present an easy-to-check criterion for the linear binary separability of the training set. Finally, two numerical examples are given to illustrate the use of the main result.
第一章 簡介 1
1-1 引言 1
1-2 論文架構 2
1-3 符號定義 3
第二章 定義與定理 4
2-1 非線性最佳化理論 [7] 4
2-1.1 非線性最佳化理論之原始問題 [7] 4
2-1.2 拉格朗日乘法元素(Lagrange Multiplier) 6
2-1.3 非線性最佳化理論之對偶問題 9
2-2 ROSENBLATT演算法 14
2-2.1 Rosenblatt感知機的原始型 14
2-2.2 Rosenblatt感知機之對偶型 18
2-2.3 修正Rosenblatt感知機原始型 20
2-3 超平面 24
2-4 線性分類 26
2-5 最大邊際分類 30
第三章 主要結論 37
3-1 系統描述 37
3-2 主要定理 43
第四章 範例模擬 45
4-1 範例一 45
4-2 範例二 47
第五章 結論與未來研究方向 49
5-1 結論 49
5-2 未來研究方向 49
參考文獻 50
[1] O. Barzilay, V.J. Brailovsky, On domain knowledge and feature selection using a support vector machine. Pattern Recognition Letters 20 (1999) 475-484.
[2] V.J. Brailovsky, O. Barzilay, R. Shahave, On global, local, mixed and neighborhood kernels for support vector machines, Pattern Recognition Letters 20 (1999) 1183-1190.
[3]C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery 2 (2) (1998) 121-167.
[4] C.C. Chang, C.W. Hsu, C.J. Lin, The analysis of decomposition methods for support vector machines, IEEE Transactions on Neural Networks 11 (4) (2000) 1003-1008.
[5] H. C. Chen, Y. L. Lin, Y.J. Sun, and J. G. Hsieh, (2002). Modified Rosenblatt’s perceptron algorithm and Novikoff’s Theorem. Proceeding of 2002 IEEE International Conference on Industrial Technology, Bangkok, Thailand, pp. 1282-1284.
[6] C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20 (1995) 273-297.
[7] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000.
[8] F. Girosi, An equivalence between sparse approximation and support vector machines, Neural Computation 10 (6) (1998) 1455-1480.
[9] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, New Jersey, 1999.
[10] M.A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, J. Platt, Trends and controversies-support vector machines, IEEE Intelligent Systems & their Applications 13 (1998) 18-28.
[11] R. Herbrich, Learning Kernel Classifiers: Theory and Algorithms, MIT Press, Cambridge, 2002.
[12] V. Kecman, Learning and Soft Computing, Cambridge: MIT Press, 2001.
[13] J. Nocdal, S. J. Wright, Numerical Optimization. Springer, New York, 1957.
[14] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review 65 (6) (1958) 386-408.
[15] Rangarajan, K.Sundaram, A First Course in Optimization Theory. Cambridge
University Press, Cambridge, United Kingdom. 1996.
[16] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, 2002.
[17] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[18] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, K.R. Müller, Engineering support vector machine kernels that recognize translation initiation sites, Bioinformatics 16 (9) (2000) 799-807.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top