|
英文文獻 Bonnie Jean, D. (2001). Review of Natural Language Processing in R.A. Wilson and F.C. Keil (Eds.), The MIT Encyclopedia of the Cognitive Sciences. Artificial Intelligence, 130(2), 185-189. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Paper presented at the Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, Pennsylvania, United States. Cheng, M. Y., Peng, H. S., Wu, Y. W., & Chen, T. L. (2010). Estimate at Completion for construction projects using Evolutionary Support Vector Machine Inference Model. Automation in Construction, 19(5), 619-629. Cordon, O., Herrera-Viedma, E., Lopez-Pujalte, C., Luque, M., & Zarco, C. (2003). A review on the application of evolutionary computation to information retrieval. International Journal of Approximate Reasoning, 34(2-3), 241-264. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory: Wiley-Interscience. Debska, B., & Guzowska-Swider, B. (2011). Decision trees in selection of featured determined food quality. Analytica Chimica Acta, 705(1-2), 261-271. Duchrow, T., Shtatland, T., Guettler, D., Pivovarov, M., Kramer, S., & Weissleder, R. (2009). Enhancing navigation in biomedical databases by community voting and database-driven text classification. Bmc Bioinformatics, 10. Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algorithms and representations for text categorization. . Paper presented at the Paper presented at the Proceedings of the seventh international conference on Information and knowledge management, Bethesda, Maryland, United States. Fan, C.-Y., Chang, P.-C., Lin, J.-J., & Hsieh, J. C. (2011). A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Applied Soft Computing, 11(1), 632-644. Frakes, W. B., & Baeza-Tates, R. (1992). Information Retrieval: Data Structures and Algorithms: Englewood Cliffs, N.J. : Prentice Hall. Galavotti, L., Nardi, V., Sebastiani, F., & Simi, M. (2000). Feature Selection and Negative Evidence in Automated Text Categorization. Paper presented at the Proceedings of the 4 th European Conference on Research and Advanced Technology for Digital Libraries, ECDL-00. Ganiz, M. C., George, C., & Pottenger, W. M. (2011). Higher Order Naive Bayes: A Novel Non-IID Approach to Text Classification. Ieee Transactions on Knowledge and Data Engineering, 23(7), 1022-1034. Garbarine, E., DePasquale, J., Gadia, V., Polikar, R., & Rosen, G. (2011). Information-theoretic approaches to SVM feature selection for metagenome read classification. Computational Biology and Chemistry, 35(3), 199-209. Gonzalez-Albo, B., & Bordons, M. (2011). Articles vs. proceedings papers: Do they differ in research relevance and impact? A case study in the Library and Information Science field. Journal of Informetrics, 5(3), 369-381. Govindarajan, M., & Chandrasekaran, R. M. (2011). Intrusion detection using neural based hybrid classification methods. Computer Networks, 55(8), 1662-1671. Harding, J. A., Shahbaz, M., Srinivas, & Kusiak, A. (2006). Data mining in manufacturing: a review American Society of Mechanical Engineers (ASME). Journal of Manufacturing Science and Engineering 128(4), 969–976. Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. Lecture Notes in Computer Science, 1398, 137-142. Kauchak, D., & Chen, F. (2005). Feature-based segmentation of narrative documents. Paper presented at the Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in Natural Language Processing, Ann Arbor, Michigan. Kim, S. B., Han, K. S., Rim, H. C., & Myaeng, S. H. (2006). Some effective techniques for naive Bayes text classification. [Article]. Ieee Transactions on Knowledge and Data Engineering, 18(11), 1457-1466. Kumar, M. A., & Gopal, M. (2010). A hybrid SVM based decision tree. Pattern Recognition, 43(12), 3977-3987. Larkey, L. S., & Croft, W. B. (1996). Combining classifiers in text categorization. Paper presented at the Paper presented at the Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval. , Zurich, Switzerland. Lewis, D. D., & Ringuette, M. (1994). A Comparison of Two Learning Algorithms for Text Categorization. In Proceedings of the Third Annual Symposium on Document Analysis and Information Retrieval 81-93. Li, S., Xia, R., Zong, C., & Huang, C.-R. (2009). A framework of feature selection methods for text categorization. Paper presented at the Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, Suntec, Singapore. Lu, S.-H., Chiang, D.-A., Keh, H.-C., & Huang, H.-H. (2010). Chinese text classification by the Naive Bayes Classifier and the associative classifier with multiple confidence threshold values. Knowledge-Based Systems, 23(6), 598-604. McLachlan, G. J., Do, K.-A., & Ambroise, C. (2004). Analyzing Microarray Gene Expression Data Wiley-Interscience. Maron, M. E. (1961). Automatic Indexing: An Experimental Inquiry. Journal of the ACM (JACM), 8(3), 404 - 417. Middleton, S. E., Shadbolt, N. R., & De Roure, D. C. (2004). Ontological user profiling in recommender systems. Acm Transactions on Information Systems, 22(1), 54-88. Moisl, H. (2011). Finding the Minimum Document Length for Reliable Clustering of Multi-Document Natural Language Corpora. Journal of Quantitative Linguistics, 18(1), 23-52. Ng, H. T., Goh, W. B., & Low, K. L. (1997). Feature selection, perceptron learning, and a usability case study for text categorization. SIGIR Forum, 31(SI), 67-73. Oezguer, L., & Geungoer, T. (2010). Text classification with the support of pruned dependency patterns. Pattern Recognition Letters, 31(12), 1598-1607. Pai, P. F., Hsu, M. F., & Wang, M. C. (2011). A support vector machine-based model for detecting top management fraud. [Article]. Knowledge-Based Systems, 24(2), 314-321. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. Paper presented at the Proceedings of the ACL-02 conference on Empirical methods in natural language processing - Volume 10. Pham, D. T., & Afify, A. A. (2005). Machine learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture: Part B 219, 395–412. Rak, R., Kurgan, L. A., & Reformat, M. (2007). Multilabel associative classification categorization of MEDLINE articles into MeSH keywords - An intelligent data mining technique to more accurately classify large volumes of documents. Ieee Engineering in Medicine and Biology Magazine, 26(2), 47-55. Ren, N., Zargham, M., & Rahimi, S. (2006). A decision tree-based classification approach to rule extraction for security analysis. International Journal of Information Technology & Decision Making, 5(1), 227-240. Robertson, S. E., & Jones, K. S. (1976). Relevance weighting of search terms. Journal of the American Society for Information Science, 27(3), 129-146. Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Commun. ACM, 18(11), 613-620. Sun, A., Lim, E.-P., & Liu, Y. (2009). On strategies for imbalanced text classification using SVM: A comparative study. Decision Support Systems, 48(1), 191-201. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining: Addison Wesley. Tu, Y.-N., & Seng, J.-L. (2009). Research intelligence involving information retrieval - An example of conferences and journals. Expert Systems with Applications, 36(10), 12151-12166. Vapnik, V. N. (1995). The nature of statistical learning theory: Springer-Verlag New York, Inc. Weiss, S. M., Apte, C., Damerau, F. J., Johnson, D. E., Oles, F. J., Goetz, T., & Hampp, T. (1999). Maximizing Text-Mining Performance. IEEE Intelligent Systems Retrieved 4, 14 Wu, C.-H., Ken, Y., & Huang, T. (2010). Patent classification system using a new hybrid genetic algorithm support vector machine. Applied Soft Computing, 10(4), 1164-1177. Xie, X. L., & Beni, G. (1991). A Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841 - 847 Xu, Y., Wang, B., Li, J., & Jing, H. (2008). An extended document frequency metric for feature selection in text categorization. Paper presented at the Proceedings of the 4th Asia information retrieval conference on Information retrieval technology, Harbin, China. Yang, Y. (1994). Expert network: effective and efficient learning from human decisions in text categorization and retrieval. Paper presented at the Paper presented at the Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval, Dublin, Ireland. Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. Paper presented at the Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval,, Berkeley, California, United States. Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, United States. Zaghloul, W., Lee, S. M., & Trimi, S. (2009). Text classification: neural networks vs support vector machines. Industrial Management & Data Systems, 109(5-6), 708-717. 中文文獻 林卓彥(2005)。 自動分類方法之比較。 國立中正大學資訊工程研究所,嘉義市。 賴銘偉(2010)。 基於文件分段之電子書特徵選取。 國立成功大學資訊管理研究所,台南市。 網站 All Conference:http://www.allconferences.com/ Conference Alert:http://www.conferencealerts.com/ DBWorld:http://research.cs.wisc.edu/dbworld/ THOMSON REUTERS (ISI) WEB OF KNOWLEDGE:http://apps.webofknowledge.com/
|