跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉睿誠
研究生(外文):Yeh, Ruei-Cheng
論文名稱:具陣列拓樸向量校正之多重訊號分類演算法於即時語音處理多聲源切音與分離
論文名稱(外文):Real-Time Processing Of Multiple Source Segmentation and Separation Using MUSIC Algorithm with Calibrated Array Manifold Vector
指導教授:胡竹生胡竹生引用關係
指導教授(外文):Hu, Jwu-Sheng
口試日期:2016-03-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院聲音與音樂創意科技碩士學位學程
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:54
中文關鍵詞:校正陣列拓樸向量麥克風陣列波束形成即時語音處理聲源方位估測
外文關鍵詞:arraybeamformingDOAreal-time
相關次數:
  • 被引用被引用:3
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一套即時的語音資訊處理架構,藉由校正麥克風陣列之拓樸向量(Array Manifold Vector)以後,並偵測聲源方向並追蹤,且實現多聲源切音與分離的方法。本方法結合了多重訊號分類演算法(Multiple Signal Classification),對聲源頻譜及空間分佈進行估測,並對頻譜中可能為聲源的方向進行機率決策,並利用波束形成原理將不同的方向上語音進行切音與分離。可在對多聲源進行追蹤並保有強健的偵測率,且可排除在聲源頻譜中錯誤偵測的聲源方位。
A real-time system structure for multiple sound sources segmentation and separation using Multiple Signal Classification algorithm is proposed in this thesis. Using a calibrated array manifold vector, the proposed calibration method improves the accuracy of the MUSIC algorithm for wide-band detections, hence providing high accuracy source segmentation and separation results. And system structure using the Multiple Signal Classification algorithm to detect and estimate the localization of sound source’s spectrum distribution. And then using probability decision method to determine the direction of sound sources. Finally, multiple sources were extracted from array signals by using beamforming method. This proposed method can track and separate multiple sources at the same time and maintain high detection rate.
摘 要..................................................I
ABSTRACT ............................................. II
誌 謝................................................III
目 錄.................................................IV
表 列..................................................VI
圖 列.................................................VII
第一章 緒論 .............................................1
1.1 研究動機 ............................................1
1.2 研究目標.............................................1
1.3 文獻回顧.............................................2
1.4 論文架構.............................................4
第二章 背景技術介紹.......................................5
2.1 麥克風陣列訊號處理....................................5
2.2 訊號到達角度估測(DOA) ................................8
2.2.1 Multiple Signals Classification Method(MUSIC).....8
2.2.2 未知數量寬頻訊號的訊號來源角度估測...................11
2.3 利用機率模型進行聲源角度決策….........................14
2.4 使用波束形成器進行聲源切音與分離......................14
2.4.1 Least Square Solution............................15
2.4.2 Linearly Constrained Minimum-Variance Beamformer.16
2.4.3 Minimum Variance Distortionless Response Beamfor.17
2.5 陣列拓樸向量校正.....................................18
第三章 系統架構與實作....................................20
3.1 系統架構說明….......................................20
3.2 陣列拓樸向量校正.....................................21
3.2.1 雙麥克風校正......................................21
3.2.2 陣列拓樸向量校正...................................22
3.3 主要聲源方位估測與特徵值分解的聲源分離.................25
3.4 多聲源方位追蹤演算法.................................27
3.5 利用波束形成器之多聲源切音與分離......................30
3.5.1 Minimum Variance Distortionless Response Beamfor.30
第四章 實驗結果與分析....................................33
4.1 陣列拓樸向量校正結果.................................37
4.1.1 校正陣列拓樸向量對波束形成器的影響與結果.............37
4.1.2 校正陣列拓樸向量對DOA的影響與結果...................39
4.2 多聲源語音分離表現及結果..............................42
第五章 結論.............................................52
5.1 研究成果............................................52
5.2 未來展望............................................52
REFERENCE..............................................53

[1] J. Pierre, M. Kaveh, “Experimental performance of calibration and direction-finding algorithms,” IEEE Int. Conf. Acoust., Speech, Signal Processing, Toronto, Canada, May 1991, vol. 2, pp. 1365-1368.
[2] C.M.S. See, “Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases,” Electronics Letters, vol. 30,. pp. 373-374, 1994.
[3] J. Chen, J. Benesty, Y. Huang, “Time delay estimation in room acoustic environments: an overview”, EURASIP Journal on applied signal ,vol 2006, pp.170-188, 2006.
[4] C.P. Mathews, D. Zoltowski, “Eigenstructure techniques for 2-D angle estimation with uniform circular arrays”, IEEE Transactions on signal processing, 1994.
[5] R.O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation”, IEEE Trans. Antennas and Propag., vol. AP-34, no. 3, pp.276-280,March 1986.
[6] J.M. Valin, F.Michaud, and J. Rouat, “Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering.,” Robotics and Autonomous Systems Journal (Elsevier), vol. 55, no. 3, pp. 216 – 228, 2007.
[7] O. L. Frost III, “An algorithm for linearly constrained adaptive array processing,” Proc. IEEE, vol. 60, no. 8, pp. 926–935, Aug. 1972.
[8] S. Tiong and S. Koh, "Beamforming Algorithms Technique by Using MVDR and LCMV," 2011.
[9] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE vol.57, no.8, 8,August 1969
[10] Y. H. Chen and C. T. Chiang, “Adaptive beamforming using the constrained kalman filter”, IEEE Transactions On Antennas And Propagation, vol. 41, no. 11, November 1993.
[11] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained adaptive beamforming,” IEEE Trans. Antennas Propag., vol.30, no. 1, pp. 27–34, Jan. 1982.
[12] K. Buckley, “A short proof of the equivalence of LCMV and GSC beamforming,” IEEE Trans. Signal Process. Lett., vol. 9, no. 6, pp. 168–169, Jun. 2002.
[13] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using beamforming and nonstationarity with applications to speech,” IEEE Trans. Signal Process., vol. 49, no. 8, pp. 1614–1626, Aug. 2001.
[14] G. Reuven, S. Gannot, and I. Cohen, “Dual-source transfer-function generalized Sidelobe canceller,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 4, may 2008.
[15] S. Markovich, S. Gannot, and I. Cohen,” Multichannel eigenspace beamforming in a reverberant noisy environment with multiple interfering speech signals,” IEEE Transactions On Audio, Speech, And Language Processing, Vol. 17, No. 6, August 2009
[16] O. Shalvi and E. Weinstein, “System identification using nonstationary signals,” IEEE Trans. Signal Process., vol. 40, no. 8, pp. 2055–2063, Aug. 1996.
[17] I. Cohen, “Relative transfer function identification using speech signals,” IEEE Trans. Speech Audio Process., vol. 12, no. 5, pp. 451–459,Sep. 2004.
[18] C.H Chen, “A dual-channel sound sources separation system using transfer function ratio approach, ” NCTU, Electrical and Control Engineering thesis, May 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊