跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃宗毅
研究生(外文):Tusng-Yi Huang
論文名稱:慢性中風個案之3D列印輔助手部裝置開發與研究
論文名稱(外文):Research and Development of 3D-Printed Assistive Hand Device for Chronic Stroke
指導教授:陳振昇陳振昇引用關係
指導教授(外文):Chen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:腦血管疾病手功能客製化手部矯具3D列印
外文關鍵詞:CVAhand functioncustomized hand orthosis3D printing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:819
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
背景: 慢性中風病人時常主訴因伸肌無力或屈肌高張,致抓握過程中難以自主打開患側手的手部失能。先前文獻提及中風後會降低獨立性,因此在中風後的手部復健是必要的。侷限誘發動作治療已被證實有較佳的療效,但此方法之限制需個案本身已俱備些微的腕部及手指伸直動作。本研究目的為探討3D列印動態手部裝置結合任務導向性方法之療效比較。
方法: 本研究納入10位受試者並隨機指派至實驗組(n=5)或控制組(n=5)。實驗組在任務導向性方法介入時全程配戴動態手部裝置,但控制組僅接受傳統的任務導向性訓練。兩組均接受單次30分鐘,每週2次的實驗室訓練以及每週5次的居家訓練課程,共為期四週。在兩週的追蹤期,受試者進行自我居家訓練課程且沒有治療師的密切追蹤。結果測量包含指腹捏力、指側捏力、握力、箱子與積木測驗及傅格梅爾評估量表。
結果: 本研究結果顯示實驗組之指腹捏力有顯著進步,但控制組沒有。實驗組亦能保留傳統介入對於指側捏力、握力、手部靈巧度以及整體上肢功能之效果。在追蹤期,實驗組的居家復健時間為每天56.8分鐘,但控制組僅26.4分鐘。顯示3D列印始部裝置可顯著的提高個案執行居家復健的復健動機。
結論: 本研究結果顯示此3D列印動態手部裝置是一個有效的治療輔具,以提升慢性中風病人之捏力、握力、手部靈巧度、整體上肢功能以及復健動機,特別是可以顯著的提升指腹捏力以及復健動機。
Background: Chronic stroke patients often have complaints about hand dysfunction due to flexor hypertonia and extensor weakness, which makes it difficult to open their affected hand for functional grasp. Past studies reported individual with stroke would reduce the independence. Hand rehabilitation after stroke is essential for restoring functional independence. Constraint-induced movement therapy has showed to be a successful treatment for patients who have acquired certain level of wrist and finger extension. The goal of this study was to investigate the feasibility of task-oriented approach incorporating 3D-printed dynamic hand device by evaluating hand functional performance and motivation during home program.
Methods: In this study, 10 participants were recruited and randomly assigned to either the experimental group (n=5) or the control group (n=5). The experimental group engaged task-oriented approach with dynamic hand device while the control group received only task-oriented approach. Both groups participated in 30-minute on-site treatment twice a week and were prescribed with home program 5 days a week for 4 weeks. During 2-week follow-up phase, all participants engaged in home program without following closely by therapist. Outcome measurements include palmar pinch force (PPF), lateral pinch force (LPF), grip force (GF), Box and Blocks Test (BBT) and Fugl-Meyer assessment (FMA).
Results: The results of study revealed the improvement of PPF in experimental group but not in control group. Meanwhile, improvement in LPF, GF, BBT, and FMA can be found in both groups. During follow-up phase, the mean time of home program in experimental group was 56.8 minutes per day but only 26.4 minutes in control group. This suggested significant enhanced motivation of executing home-based training.
Conclusion: This study demonstrates that the 3D-printed dynamic hand device is an effective therapeutic assistive device to improve pinch force, grasp force, dexterity, function of upper extremity and facilitate motivation during home program in individuals with chronic stroke.
目錄
致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 中風之流行病學 2
1-3 中風的手部失能 3
1-4 中風復健的理論基礎與介入方法 5
1-4-1 中風傷後復原之理論基礎 5
1-4-2 中風介入方法 5
1-4-3 非動力式動態手部裝置 7
1-5 3D列印應用 13
1-6 研究動機與目的 18
第二章 材料與方法 19
2-1 3D列印動態手部裝置之設計理念及製造流程 19
2-1-1 設計理念及實驗流程 19
2-1-2 研究設備 21
2-2 3D列印動態手部裝置之開發階段 24
2-2-1 動態機構模擬 24
2-2-2 模型建立 26
2-2-3 模型成型 29
2-3 臨床實驗階段 31
2-3-1 個案收集與分組 31
2-3-2 實驗流程 32
2-3-3 介入計劃及流程 33
2-3-4 評估參數與評估工具 34
2-3-4.1 力量參數 35
2-3-4.2 手部靈巧度測驗 37
2-3-4.3 上肢動作功能量表 38
2-3-5 統計分析 39
2-3-5.1 初始能力之組間比較 39
2-3-5.2 兩組間之比較 39
2-3-5.3 各組內前測、後測、追蹤測之比較 40
第三章 結果 41
3-1 受試者之分組資料 41
3-2 力量參數 42
3-2-1 指腹捏力 42
3-2-2 指側捏力 43
3-2-3 握力 44
3-3 箱子與積木測驗參數 45
3-4 傅格梅爾上肢評估量表 46
3-5 追蹤期自主居家訓練之平均時間 47
第四章 討論 48
4-1 與現有產品之差異 48
4-2 力量參數之探討 48
4-2-1 指腹捏力之介入療效探討 49
4-2-2 指側捏力及握力之介入療效探討 50
4-3 手部靈巧度之介入療效探討 51
4-4 整體上肢動作功能表現之介入療效探討 52
4-5 動態手部裝置可增進個案居家復健之動機 54
4-6 產品開發及臨床實驗階段之研究限制 55
4-7 未來研究方向 56
第五章 結論 59
參考文獻 60
附錄 66

圖目錄
圖 1-1常見的中風個案拇指動作 4
圖 1-2 SaeboFlex orthosis 8
圖 1-3動態機能輔助手 8
圖 1-4動態手功能訓練器 9
圖 1-5 Dynamic Hand Splint, DHS 9
圖 1-6球型抓握 12
圖 1-7指腹抓握 12
圖 1-8 3D列印流程 13
圖 1-9 Robohand之3D列印義肢手開源模型 15
圖 1-10 Robohand之3D列印義肢手穿戴圖 16
圖 1-11 Cyborg Beast之3D列印義肢手開源模型 16
圖 1-12日本EXiii公司的handiii 17
圖 1-13 3D列印輔助手Aquahand 17
圖 1-14 3D列印輔助手Spiderhand 18
圖 2-1完整實驗流程 20
圖 2-2「UP! Box」3D印表機 22
圖 2-3 Flashforge Dreamer 22
圖 2-4 Flashforge Finder 23
圖 2-5 CR-10 23
圖 2-6 3D掃描器iSense 23
圖 2-7裝置開發流程 24
圖 2-8桿件標記及模擬手部張開圖 25
圖 2-9桿件模擬抓握圖 25
圖 2-10桿件實際測試圖 26
圖 2-11載入之模型原檔 27
圖 2-12分離後外殼 27
圖 2-13動態手部裝置側視圖 28
圖 2-14指套側視圖 28
圖 2-15切片軟體UP!印列預覽圖 29
圖 2-16切片軟體Cura列印預覽圖 30
圖 2-17切片軟體Flashprint列印預覽圖 30
圖 2-18手部動態裝置實體圖 31
圖 2-19臨床實驗階段之流程圖 33
圖 2-20捏力計及測試擺位 36
圖 2-21握力計及測試擺位 37
圖 2-22箱子與積木測驗評估工具及施測方式 38
圖 3-1指腹捏力在不同時間點的結果比較 42
圖 3-2指側捏力在不同時間點的結果比較 43
圖 3-3握力在不同時間點的結果比較 44
圖 3-4箱子與積木測驗在不同時間點的結果比較 45
圖 3-5傅格梅爾上肢評估量表參數在不同時間點的結果比較 46
圖 3-6追蹤期自主居家訓練之平均時間比較 47

表目錄
表 2-1訓練課程架構 34
表 3-1兩組之基本資料 41
表 3-2兩組之起始能力 42
表 4-1動態手部裝置差異之表格 48
表 4-2傅格梅爾量表之進步幅度比較 54
Andriske, L., Verikios, D., & Hitch, D. (2017). Patient and Therapist Experiences of the SaeboFlex: A Pilot Study. Occupational Therapy International, 2017.
Barry, J. G., Ross, S. A., & Woehrle, J. (2012). Therapy incorporating a dynamic wrist-hand orthosis versus manual assistance in chronic stroke: a pilot study. J Neurol Phys Ther, 36(1), 17-24. doi:10.1097/NPT.0b013e318246203e
Bhargava, A. S., Eapen, C., & Kumar, S. P. (2010). Grip strength measurements at two different wrist extension positions in chronic lateral epicondylitis-comparison of involved vs. uninvolved side in athletes and non athletes: a case-control study. Sports Med Arthrosc Rehabil Ther Technol, 2, 22. doi:10.1186/1758-2555-2-22
Bonita, R., Solomon, N., & Broad, J. B. (1997). Prevalence of stroke and stroke-related disability. Estimates from the Auckland stroke studies. Stroke, 28(10), 1898-1902.
Brokaw, E. B., Black, I., Holley, R. J., & Lum, P. S. (2011). Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 19(4), 391-399. doi:10.1109/tnsre.2011.2157705
Brokaw, E. B., Murray, T., Nef, T., & Lum, P. S. (2011). Retraining of interjoint arm coordination after stroke using robot-assisted time-independent functional training. J Rehabil Res Dev, 48(4), 299-316.
Carr, J. H., & Shepherd, R. B. (1989). A motor learning model for stroke rehabilitation. Physiotherapy, 75(7), 372-380.
Chen, H. M., Chen, C. C., Hsueh, I. P., Huang, S. L., & Hsieh, C. L. (2009). Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair, 23(5), 435-440. doi:10.1177/1545968308331146
Cramer, S. C. (2008). Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annals of neurology, 63(3), 272-287.
Desrosiers, J., Bravo, G., Hebert, R., Dutil, E., & Mercier, L. (1994). Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil, 75(7), 751-755.
Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology, 3(9), 528-536. doi:http://dx.doi.org/10.1016/S1474-4422(04)00851-8
Duncan, P. W., Bode, R. K., Min Lai, S., & Perera, S. (2003). Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil, 84(7), 950-963.
Duncan, P. W., Goldstein, L. B., Matchar, D., Divine, G. W., & Feussner, J. (1992). Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke, 23(8), 1084-1089.
Duncan, P. W., Propst, M., & Nelson, S. G. (1983). Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther, 63(10), 1606-1610.
Exiii. (2014). handiii. Retrieved from http://exiii.jp/projects/#handiii
Farrell, J. F., Hoffman, H. B., Snyder, J. L., Giuliani, C. A., & Bohannon, R. W. (2007). Orthotic aided training of the paretic upper limb in chronic stroke: results of a phase 1 trial. NeuroRehabilitation, 22(2), 99-103.
Fisher, M. (2003). Recommendations for advancing development of acute stroke therapies stroke therapy academic industry roundtable 3. Stroke, 34(6), 1539-1546.
Flood, F. (2014). Cyborg beast Retrieved from https://www.thingiverse.com/thing:308124/#files
Fong, P. W., & Ng, G. Y. (2001). Effect of wrist positioning on the repeatability and strength of power grip. Am J Occup Ther, 55(2), 212-216.
Franck, J. A., Timmermansb, A. A. A., & Seelen, H. A. M. (2013). Effects of a dynamic hand orthosis for functional use of the impaired upper limb in sub-acute stroke patients: A multiple single case experimental design study. Technology and Disability, 25, 177-187. doi:10.3233/TAD-130374
Fugl-Meyer, A. R., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med, 7(1), 13-31.
Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair, 16(3), 232-240.
Gordon, J. (1987). Assumptions underlying physical therapy intervention: Theoretical and historical perspectives. Movement science: Foundations for physical therapy in rehabilitation, ed. J. Carr & R. Sheppard.
Hakkennes, S., & Keating, J. L. (2005). Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. Australian Journal of Physiotherapy, 51(4), 221-231.
Haley, S. M., & Fragala-Pinkham, M. A. (2006). Interpreting change scores of tests and measures used in physical therapy. Phys Ther, 86(5), 735-743.
Hoffman, H. B., & Blakey, G. L. (2011). New design of dynamic orthoses for neurological conditions. NeuroRehabilitation, 28(1), 55-61. doi:10.3233/nre-2011-0632
Jeon, H. S., Woo, Y. K., Yi, C. H., Kwon, O. Y., Jung, M. Y., Lee, Y. H., . . . Choi, B. R. (2012). Effect of intensive training with a spring-assisted hand orthosis on movement smoothness in upper extremity following stroke: a pilot clinical trial. Top Stroke Rehabil, 19(4), 320-328. doi:10.1310/tsr1904-320
Krassenstein, E. (2015). Students Develop New 3D Printed Aquahand – Potential to Help Stroke Victims Regain Hand Movement. Retrieved from http://goo.gl/WPDxNP
Lang, C. E., DeJong, S. L., & Beebe, J. A. (2009). Recovery of thumb and finger extension and its relation to grasp performance after stroke. J Neurophysiol, 102(1), 451-459.
Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: a systematic review. The Lancet Neurology, 8(8), 741-754.
Langton, H. R. (1990). Rehabilitation After Stroke. QJM, 76(1), 659-674.
Lannin, N. A., Cusick, A., Hills, C., Kinnear, B., Vogel, K., Matthews, K., & Bowring, G. (2016). Upper limb motor training using a Saebo orthosis is feasible for increasing task-specific practice in hospital after stroke. Aust Occup Ther J, 63(6), 364-372. doi:10.1111/1440-1630.12330
Lundeberg, T., Lund, I., Dahlin, L., Borg, E., Gustafsson, C., Sandin, L., . . . Eriksson, S. V. (2001). Reliability and responsiveness of three different pain assessments. J Rehabil Med, 33(6), 279-283.
MakerBot. (2013). Snap-Together Robohand. Retrieved from http://www.thingiverse.com/thing:92937
Mathiowetz, V., Volland, G., Kashman, N., & Weber, K. (1985). Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther, 39(6), 386-391.
Mroz, J. (2015). Hand of a Superhero. Retrieved from https://www.nytimes.com/2015/02/17/science/hand-of-a-superhero.html?_r=1
Nakamura, J., & Csikszentmihalyi, M. (2009). Flow theory and research. Handbook of positive psychology, 195-206.
Norine Foley, Swati Mehta, Jeffrey Jutai, Elizabeth Staines, & Teasell, R. (2013). Upper Extremity Interventions. Evidence-Based Review of Stroke Rehabilitation, 1-163.
O'Driscoll, S. W., Horii, E., Ness, R., Cahalan, T. D., Richards, R. R., & An, K. N. (1992). The relationship between wrist position, grasp size, and grip strength. J Hand Surg Am, 17(1), 169-177.
O'Sullivan, S. B., Schmitz, T. J., & Fulk, G. (2013). Physical rehabilitation (6th ed. Vol. 15): FA Davis.
Oujamaa, L., Relave, I., Froger, J., Mottet, D., & Pelissier, J.-Y. (2009). Rehabilitation of arm function after stroke. Literature review. Annals of physical and rehabilitation medicine, 52(3), 269-293.
Platz, T., Pinkowski, C., van Wijck, F., Kim, I. H., di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clin Rehabil, 19(4), 404-411.
Radomski, M. V., & Latham, C. A. T. (2008). Occupational therapy for physical dysfunction: Lippincott Williams & Wilkins.
Raghavan, P. (2007). The nature of hand motor impairment after stroke and its treatment. Curr Treat Options Cardiovasc Med, 9(3), 221-228.
Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., & Gowland, C. (1993). Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther, 73(7), 447-454.
Shumway-Cook, A., & Woollacott, M. H. (1995). Motor control: theory and practical applications: Lippincott Williams & Wilkins.
Shumway-Cook, A., & Woollacott, M. H. (2007). Motor control: translating research into clinical practice: Lippincott Williams & Wilkins.
Simon. (2015). Engineer creates a 3D printed exoskeleton 'Spiderhand' for stroke victims. Retrieved from http://goo.gl/eo4WvK
Smania, N., Montagnana, B., Faccioli, S., Fiaschi, A., & Aglioti, S. M. (2003). Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Archives of physical medicine and rehabilitation, 84(11), 1692-1702.
Steultjens, E. M., Dekker, J., Bouter, L. M., van de Nes, J. C., Cup, E. H., & van den Ende, C. H. (2003). Occupational therapy for stroke patients: a systematic review. Stroke, 34(3), 676-687. doi:10.1161/01.str.0000057576.77308.30
Sunderland, A., Tinson, D., Bradley, L., & Hewer, R. L. (1989). Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. Journal of Neurology, Neurosurgery & Psychiatry, 52(11), 1267-1272.
Tortora, G. J. (2004). Principles of human anatomy: Wiley.
Towles, J. D., Kamper, D. G., & Rymer, W. Z. (2010). Lack of hypertonia in thumb muscles after stroke. J Neurophysiol, 104(4), 2139-2146. doi:10.1152/jn.00423.2009
Vyas, G. (2015). Dynamic Hand Splint. Retrieved from http://goo.gl/buPGK7
Wade, D., Langton-Hewer, R., Wood, V., Skilbeck, C., & Ismail, H. (1983). The hemiplegic arm after stroke: measurement and recovery. Journal of Neurology, Neurosurgery & Psychiatry, 46(6), 521-524.
Wagner, J. M., Rhodes, J. A., & Patten, C. (2008). Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke. Phys Ther, 88(5), 652-663. doi:10.2522/ptj.20070255
Wolf, S. L., Thompson, P. A., Winstein, C. J., Miller, J. P., Blanton, S. R., Nichols-Larsen, D. S., . . . Light, K. E. (2010). The EXCITE stroke trial. Stroke, 41(10), 2309-2315.
Yeargin-Allsopp, M., Braun, K. V. N., Doernberg, N. S., Benedict, R. E., Kirby, R. S., & Durkin, M. S. (2008). Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics, 121(3), 547-554.
安德復診所. (民102). 動態機能輔助手. Retrieved from http://goo.gl/gNK3yd
吳鑫漢. (民100). 手部復健問題處理副木.
李佳宜, 吳菁宜, 連倚南, 許美慧, & 林克忠. (民95). 改良式侷限誘發動作治療對於腦中風病人之復健成效. 臺灣醫學, 10(4), 429-437.
林湧順. (民103). 3D列印基本認識.
邱弘毅. (民97). 腦中風之現況與流行病學特徵. 台灣腦中風學會會訊, 15(3), 4.
劉適寧. (民105). 3D列印對生醫產業的影響. Retrieved from http://goo.gl/l4xX70
衛生福利部統計處. (民105). 105年死因統計結果分析. Retrieved from http://www.mohw.gov.tw/dl-33686-f713f1fb-bd64-4c0d-a810-cefabef4cb2e.html
黎秉東. (民101). 動態手功能訓練器. 中華民國專利資訊系統. Retrieved from http://goo.gl/MMM3l1
賴宏仁與曹申. (民103). 金屬粉體材料在3D列印技術之發展與應用. 工業技術研究院電子報, 第10311期.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top