跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宥佐
研究生(外文):You-Zuo Chen
論文名稱:抗糖尿病用藥透過調控新穎長片段核糖核酸Loc100506691 抑制胃癌細胞的生長與轉移
論文名稱(外文):Anti-diabetic drug inhibits gastric cancer cell proliferation and metastasis by regulating a novel long-non coding RNA Loc100506691
指導教授:劉麗芬
指導教授(外文):Li-Feng Liu
學位類別:碩士
校院名稱:義守大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:103
中文關鍵詞:二甲雙胍胃癌長片段非編碼核糖核酸非編碼核糖核酸
外文關鍵詞:MetforminGastric cancerLong-non coding RNALoc100506691non-coding RNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
長片段非編碼核醣核酸(lncRNA)是一群長度大於200個核苷酸非蛋白質編碼轉錄體,許多研究資料顯示長片段非編碼核醣核酸在癌症發展中扮演重要角色其中包括細胞生長、細胞週期、凋亡與轉移,Metformin已經被證實在許多癌症中擁有預防與治療癌症的潛力,在之前的研究中皆專注於尋找受metformin調控的蛋白質編碼基因和微小核醣核酸,而這些受調控的基因主要參與癌症生長,但是在胃癌中metformin如何透過調控長片段非編碼核醣核酸表現造成細胞生長的抑制目前並不清楚。因此本研究希望了解metformin在胃癌中的角色並且嘗試找尋其下游的調控基因,我們的結果顯示metformin處理可以誘導細胞週期停滯在G2/M,並且顯著性抑制胃癌細胞的生長,為了近一步了解詳細的調控機制,我們使用微陣列晶片分析胃癌細胞處理 metformin、控制組以及兩對胃癌病人的正常與腫瘤組織中的轉錄體,結果發現處理metformin後可以誘導4,160個基因表現上升以及3,383個基因表現下降,將這些受metformin調控的基因進一步作訊息傳遞路徑分析發現,這些metformin調控的基因顯著的聚集在調控細胞生長與細胞週期控制的路徑上,而這些metformin調控的基因中有61個蛋白質基因與20個長片段非編碼核醣核酸基因在胃癌檢體中呈現低表現,但當metformin處理之後會提升其表現量,相反的其中有61個蛋白質基因與7個長片段非編碼核醣核酸基因在胃癌檢體中呈現異常高表現,但處理metformin可以抑制其表現量,其中我們選定Loc100506691作深入探討,利用real-time PCR分析發現,胃癌細胞處理metformin後loc100506691表現量明顯降低,且與劑量多寡或時間長短呈現正相關。在臨床胃癌病人腫瘤比起正常組織中的Loc100506691呈現顯著高表現 (P<0.001),利用siRNA方式剔除降低Loc100506691表現能夠有效的抑制胃癌細胞生長、轉移能力與細胞週期停滯。我們的結果揭示metformin抑制胃癌細胞生長的機制可能某些部份是因Loc100506691表現量受到抑制後而誘導細胞週期停滯在G2/M所引起。

The long-non coding RNAs (lncRNAs) are a group of non-protein coding transcripts, which are more than 200 nucleotides in length. Accumulating evidences showed that lncRNAs play critical role in cancer progression, including cell growth, cell cycle, apoptosis and metastasis. Metformin shows the potential as a preventive and therapeutic drug for human cancers. Previous studies indicated that metformin suppressed cancer cerll growth by regulating protein coding genes and microRNAs (miRNA). However, the role of lncRNA involved in metformin-induced inhibition of cell growth and its biological function in gastric cancer remains largely unknown. In this study, we like to identify metformin-associated lncRNAs in gastric cancer cell. Our results showed that metformin could significantly suppress gastric cancer cell growth via inducing cell cycle arrest at G2/M phase. In order to study detail mechanism, we performed the transcriptome profiles of HR cell with/without metformin treatment, adjacent normal tissues and cancer tissues form two gastric cancer patients using microarray approach. Our data revealed that 4,160 genes upregulated and 3,383 genes downregulated in HR cell with metformin treatment. Using pathway enrichment analysis revealed that these metformin-associated genes significantly involved in cell cycle-relative pathway.

Among these metformin-regulating genes, these are 61 protein-coding genes and 20 lncRNAs were downregulated in gastric cancer compared to adjacent normal tissues, but upregulated in HR after metformin treatment. Furthermore, 61 protein-coding genes and 7 lncRNAs upregulated in gastric cancer, but downregulated in HR cell by metformin treatment. Among them, the oncogenic lncRNA, Loc10050669, was selected to further examine in our study. The expression levels of Loc10050669 were decreased in dose- and time course-dependent manner after gastric cancer cells treatment with metformin. Moreover, Loc100506691 were significant overexpression in gastric cancer compared to adjacent normal tissues (P<0.001). Knockdown of Loc10050669 expression could significantly suppress gastric cancer cell growth and induce cell cycle arrest at G2/M phase. Furthermore, Loc100506691 knockdown also significantly suppressed cell invasion ability in gastric cancer cells. Our findings concluded that anti-proliferative effects of metformin in gastric cancer may result partly from induction of cell cycle arrest at G2/M by suppressing loc100506691 expression.

Acknowledgement ………………………………………………………ⅰ
Chinese Abstract ………………………………………………………. ⅱ
English Abstract ………………………………………………………. ⅲ
Table of Contents ……………………………………………………… ⅳ
List of Tables …………………………………………………………... ⅴ
List of Figures …………………………………………………………. ⅵ
I. Introduction ………………………………………………………. 01
II. Specific Aims ……………………………………………………… 07
III. Results ……………………………………………………………... 08
3-1 To investigate the effects of gastric cancer with metformin treatment …………………………………………………………… 08
3-1-1 Metformin inhibited gastric cancer cell proliferation …….. 08
3-1-2 Metformin affects DNA damage and induces cell cycle arrest at G2/M-phase in gastric cancer cell ……………………………………… 08
3-1-3 Metformin inhibited gastric cancer cell invasion …………. 09
3-1-4 Generate the RNA transcriptome profiles of HR cell with metformin treatment ……………………………………………………. 09
3-2 Identification of metformin-associated lncRNA candidates in gastric cancer …………………………………………… 11
3-2-1 Identify oncogene and tumor suppressor gene in gastric cancer …………………………………………………………………… 11
3-2-2 Identify metformin-regulating oncogene and tumor suppressor gene in gastric cancer ………………………………… 12
3-2-3 LncRNA expression were regulated by metformin ………….. 12
3-2-4 Examine the expression levels of Loc100506691 in gastric cancer ……………………………………………………………………. 13
3-3 The biological role of Loc100506691 in gastric cancer …………. 14
3-3-1 Identify full length of Loc100506691 sequence ……………... 14
3-3-2 Knockdown of Loc100506691 suppress gastric cancer cell proliferation ……………………………………………………... 14
3-3-3 Knockdown of Loc100506691 inhibit invasion ability on gastric cancer cell ………………………………………………………… 15
IV. Discussion ………………………………………………………….. 16
V. Methods …………………………………………………….......... 20
5-1 Chemicals ……………………………………………………… 20
5-2 Cell culture …………………………………………………….. 20
5-3 WST-1 Assay ………………………………………………….. 20
5-4 Image flow cytometry assay …………………………………… 21
5-5 Western blotting ……………………………………………….. 21
5-6 Invasion assay …………………………………………………. 22
5-7 Colony-forming assay …………………………………………. 22
5-8 Microarray ……………………………………………………... 23
5-9 Pathway enrichment analysis …………………………….. 23
5-10 RNA isolation ………………………………………………… 24
5-11 Reverse transcription-PCR …………………………………… 24
5-12 Gene expression by quantitative PCR ……….. 24
5-13 For full-length, RNA ligase-mediated rapid amplification of 5´ and 3´ cDNA ends (RLM-RACE) ………………………………………….. 25
5-14 Loc100506691 cDNA Sequences ……………………………. 25
5-14-1 Isoform-1 ………………………………………………… 25
5-14-2 Isoform-2 ………………………………………………… 26
5-14-3 Isoform-3 ………………………………………………… 26
5-15 Polymerase chain reaction, PCR ………………... 27
5-16 RNA Interference …………………………………………….. 28
VI. References …………………………………………………………. 29

[1].Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
[2].Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29.
[3].Wadhwa, R., et al., Gastric cancer [mdash] molecular and clinical dimensions. Nature Reviews Clinical Oncology, 2013. 10(11): p. 643-655.
[4].Forman, D. and V. Burley, Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Practice & Research Clinical Gastroenterology, 2006. 20(4): p. 633-649.
[5].Laur6n, P., The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49.
[6].Power, D.G., D.P. Kelsen, and M.A. Shah, Advanced gastric cancer--slow but steady progress. Cancer Treat Rev, 2010. 36(5): p. 384-92.
[7].Proserpio, I., et al., Multimodal treatment of gastric cancer. World J Gastrointest Surg, 2014. 6(4): p. 55-8.
[8].Pollak, M., Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res (Phila), 2010. 3(9): p. 1060-5.
[9].Hosono, K., et al., Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer prevention research, 2010. 3(9): p. 1077-1083.
[10].Viollet, B., et al., Cellular and molecular mechanisms of metformin: an overview. Clinical science, 2012. 122(6): p. 253-270.
[11].Salani, B., et al., Metformin, cancer and glucose metabolism. Endocrine-related cancer, 2014. 21(6): p. R461-R471.
[12].Gonzalez-Angulo, A.M. and F. Meric-Bernstam, Metformin: a therapeutic opportunity in breast cancer. Clinical Cancer Research, 2010. 16(6): p. 1695-1700.
[13].Dowling, R.J., et al., Metformin in cancer: translational challenges. Journal of molecular endocrinology, 2012. 48(3): p. R31-R43.
[14].Dowling, R.J., et al., Metformin inhibits mammalian target of rapamycin–dependent translation initiation in breast cancer cells. Cancer research, 2007. 67(22): p. 10804-10812.
[15].Zakikhani, M., et al., Metformin is an AMP kinase–dependent growth inhibitor for breast cancer cells. Cancer research, 2006. 66(21): p. 10269-10273.
[16].Inoki, K., et al., Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes & development, 2003. 17(15): p. 1829-1834.
[17].Dowling, R.J., P.J. Goodwin, and V. Stambolic, Understanding the benefit of metformin use in cancer treatment. BMC medicine, 2011. 9(1): p. 33.
[18].Baserga, R., F. Peruzzi, and K. Reiss, The IGF‐1 receptor in cancer biology. International journal of cancer, 2003. 107(6): p. 873-877.
[19].Shu, Y., et al., Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. The Journal of clinical investigation, 2007. 117(5): p. 1422-1431.
[20].Jin, H.-E., et al., Reduced antidiabetic effect of metformin and down-regulation of hepatic Oct1 in rats with ethynylestradiol-induced cholestasis. Pharmaceutical research, 2009. 26(3): p. 549-559.
[21].Tzvetkov, M., et al., The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clinical Pharmacology & Therapeutics, 2009. 86(3): p. 299-306.
[22].Nair, V., et al., Mechanism of Metformin-dependent Inhibition of Mammalian Target of Rapamycin (mTOR) and Ras Activity in Pancreatic Cancer ROLE OF SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS. Journal of Biological Chemistry, 2014. 289(40): p. 27692-27701.
[23].Menendez, J.A. and R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer, 2007. 7(10): p. 763-777.
[24].Algire, C., et al., Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocrine-related cancer, 2010. 17(2): p. 351-360.
[25].Marini, C., et al., Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle, 2013. 12(22): p. 3490-3499.
[26].Salani, B., et al., Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Scientific reports, 2013. 3.
[27].Deng, X.-S., et al., Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle, 2012. 11(2): p. 367-376.
[28].Feng, Y., et al., Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell death & disease, 2014. 5(2): p. e1088.
[29].Hirsch, H.A., D. Iliopoulos, and K. Struhl, Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proceedings of the National Academy of Sciences, 2013. 110(3): p. 972-977.
[30].Daniel, C., J. Lagergren, and M. Ohman, RNA editing of non-coding RNA and its role in gene regulation. Biochimie, 2015. 117: p. 22-7.
[31].Cheetham, S.W., et al., Long noncoding RNAs and the genetics of cancer. Br J Cancer, 2013. 108(12): p. 2419-25.
[32].Taft, R.J., et al., Non-coding RNAs: regulators of disease. J Pathol, 2010. 220(2): p. 126-39.
[33].Esteller, M., Non-coding RNAs in human disease. Nat Rev Genet, 2011. 12(12): p. 861-74.
[34].Harries, L.W., Long non-coding RNAs and human disease. Biochem Soc Trans, 2012. 40(4): p. 902-6.
[35].Dey, B.K., A.C. Mueller, and A. Dutta, Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription, 2014. 5(4): p. e944014.
[36].Jia, H., et al., Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna, 2010. 16(8): p. 1478-1487.
[37].Ponting, C.P., P.L. Oliver, and W. Reik, Evolution and functions of long noncoding RNAs. Cell, 2009. 136(4): p. 629-641.
[38].Prensner, J.R. and A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology. Cancer Discov, 2011. 1(5): p. 391-407.
[39].Rinn, J.L. and H.Y. Chang, Genome regulation by long noncoding RNAs. Annu Rev Biochem, 2012. 81: p. 145-66.
[40].Nagano, T. and P. Fraser, No-nonsense functions for long noncoding RNAs. Cell, 2011. 145(2): p. 178-81.
[41].Pasmant, E., et al., Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer research, 2007. 67(8): p. 3963-3969.
[42].Kornienko, A.E., et al., Gene regulation by the act of long non-coding RNA transcription. BMC biology, 2013. 11(1): p. 1.
[43].Tsai, M.-C., R.C. Spitale, and H.Y. Chang, Long intergenic noncoding RNAs: new links in cancer progression. Cancer research, 2011. 71(1): p. 3-7.
[44].Wang, J., et al., MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed Pharmacother, 2014. 68(5): p. 557-64.
[45].Hajjari, M., et al., Up-regulation of HOTAIR long non-coding RNA in human gastric adenocarcinoma tissues. Med Oncol, 2013. 30(3): p. 670.
[46].Lee, N.K., et al., Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma. Biochemical and biophysical research communications, 2014. 451(2): p. 171-178.
[47].Niinuma, T., et al., Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer research, 2012. 72(5): p. 1126-1136.
[48].Li, H., et al., Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget, 2014. 5(8): p. 2318-29.
[49].Yang, F., et al., Up‐regulated long non‐coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS Journal, 2012. 279(17): p. 3159-3165.
[50].Zhang, E.-B., et al., c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Medical Oncology, 2014. 31(5): p. 1-8.
[51].Zhuang, M., et al., The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochemical and biophysical research communications, 2014. 448(3): p. 315-322.
[52].Yang, F., et al., Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. Journal of cancer research and clinical oncology, 2013. 139(3): p. 437-445.
[53].Zhao, Y., et al., Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncology reports, 2014. 31(1): p. 358-364.
[54].Deng, W., et al., TET2 regulates LncRNA-ANRIL expression and inhibits the growth of human gastric cancer cells. IUBMB Life, 2016.
[55].Xu, M.-D., et al., Long non-coding RNA LSINCT5 predicts negative prognosis and exhibits oncogenic activity in gastric cancer. Medicine, 2014. 93(28): p. e303-e303.
[56].Zhang, X.-w., et al., Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochemical and biophysical research communications, 2015. 462(3): p. 227-232.
[57].Wang, Y., et al., Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Molecular and cellular biology, 2014. 34(17): p. 3182-3193.
[58].Sun, M., et al., Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol, 2014. 35(2): p. 1065-73.
[59].Sun, M., et al., Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer, 2014. 14: p. 319.
[60].Han, Y., et al., LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC cancer, 2014. 14(1): p. 1.
[61].Gandhy, S.U., et al., Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC. Oncotarget, 2015. 6(28): p. 26359.
[62].Lottin, S., et al., Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis, 2002. 23(11): p. 1885-1895.
[63].Luo, M., et al., Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer letters, 2013. 333(2): p. 213-221.
[64].Tsang, W. and T. Kwok, Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene, 2007. 26(33): p. 4877-4881.
[65].Yan, L., et al., Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene, 2015. 34(23): p. 3076-3084.
[66].El-Haggar, S.M., et al., Metformin may protect nondiabetic breast cancer women from metastasis. Clin Exp Metastasis, 2016.
[67].Guo, Q., et al., Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol Med Rep, 2016.
[68].Zaafar, D.K., S.A. Zaitone, and Y.M. Moustafa, Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS One, 2014. 9(6): p. e100562.
[69].Kato, K., et al., The anti-diabetic drug metformin inhibits pancreatic cancer cell proliferation in vitro and in vivo: Study of the microRNAs associated with the antitumor effect of metformin. Oncol Rep, 2016. 35(3): p. 1582-92.
[70].Bost, F., et al., Metformin and cancer therapy. Current opinion in oncology, 2012. 24(1): p. 103-108.
[71].Bao, B., et al., Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer prevention research, 2012. 5(3): p. 355-364.
[72].Cerezo, M., et al., Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Molecular cancer therapeutics, 2013. 12(8): p. 1605-1615.
[73].Liang, M., et al., FER1L4: a potential plasma biomarker to identify gastric cancer with lymph node invasion. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2016. 9(2): p. 1982-1988.
[74].Kato, K., et al., The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther, 2012. 11(3): p. 549-60.
[75].Wu, N., et al., Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma, 2010. 58(6): p. 482-490.
[76].Isakovic, A., et al., Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci, 2007. 64(10): p. 1290-302.
[77].Wang, Z., et al., Radiosensitization of metformin in pancreatic cancer cells via abrogating the G2 checkpoint and inhibiting DNA damage repair. Cancer letters, 2015. 369(1): p. 192-201.
[78].Porter, L.A. and D.J. Donoghue, Cyclin B1 and CDK1: nuclear localization and upstream regulators. PROGRESS IN CELL CYCLE RESEARCH., 2003. 5: p. 335-348.
[79].Gavet, O. and J. Pines, Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. The Journal of cell biology, 2010. 189(2): p. 247-259.
[80].Knoblich, J.A. and C.F. Lehner, Synergistic action of Drosophila cyclins A and B during the G2-M transition. The EMBO journal, 1993. 12(1): p. 65.
[81].Liu, D., et al., Cyclin A1 is required for meiosis in the male mouse. Nature genetics, 1998. 20(4): p. 377-380.
[82].Montagnoli, A., et al., Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes & Development, 1999. 13(9): p. 1181-1189.
[83].Polyak, K., et al., p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes & development, 1994. 8(1): p. 9-22.
[84].Sha, J., et al., Vav3, a GEF for RhoA, plays a critical role under high glucose conditions. Endocrinology and Metabolism, 2014. 29(3): p. 363-370.
[85].Martin, M.J., et al., Metformin accelerates the growth of BRAFV600E-driven melanoma by upregulating VEGF-A. Cancer discovery, 2012. 2(4): p. 344-355.
[86].Hanrahan, V., et al., The angiogenic switch for vascular endothelial growth factor (VEGF)‐A, VEGF‐B, VEGF‐C, and VEGF‐D in the adenoma–carcinoma sequence during colorectal cancer progression. The Journal of pathology, 2003. 200(2): p. 183-194.
[87].Mizutani, N., et al., Reduction of insulin signaling upregulates angiopoietin-like protein 4 through elevated free fatty acids in diabetic mice. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association, 2012. 120(3): p. 139-144.
[88].Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674.
[89].Ooi, C.H., et al., Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet, 2009. 5(10): p. e1000676.
[90].Nagini, S., Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol, 2012. 4(7): p. 156-169.
[91].Green, A.S., et al., LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle, 2011. 10(13): p. 2115-2120.
[92].Kalender, A., et al., Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell metabolism, 2010. 11(5): p. 390-401.
[93].Tamura, G., et al., E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. Journal of the National Cancer Institute, 2000. 92(7): p. 569-573.
[94].Yoshida, T., et al., Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis. Gastric Cancer, 2013. 16(4): p. 488-497.
[95].Matsuoka, T. and M. Yashiro, The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers, 2014. 6(3): p. 1441-1463.
[96].Byun, D.S., et al., Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. International journal of cancer, 2003. 104(3): p. 318-327.
[97].Oki, E., et al. Impact of PTEN/AKT/PI3K signal pathway on the chemotherapy for gastric cancer. in ASCO Annual Meeting Proceedings. 2006.
[98].Krausova, L., et al., Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochemical pharmacology, 2011. 82(11): p. 1771-1780.
[99].Zhang, E.-b., et al., Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget, 2014. 5(8): p. 2276-2292.
[100].Zhang, E.-b., et al., Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. 2014.
[101].Sun, M., et al., Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumor Biology, 2014. 35(2): p. 1065-1073.
[102].Sun, M., et al., Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC cancer, 2014. 14(1): p. 1.
[103].Emmrich, S., et al., LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Molecular cancer, 2014. 13(1): p. 1.
[104].Montes, M., et al., The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence. Nature communications, 2015. 6.
[105].Yang, H., et al., Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene, 2015.
[106].Gloss, B., et al., ZNF300P1 Encodes a lincRNA that regulates cell polarity and is epigenetically silenced in type II epithelial ovarian cancer. Molecular cancer, 2014. 13(1): p. 1.
[107].Takahashi, Y., et al., Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. British journal of cancer, 2014. 110(1): p. 164-171.
[108].Meyer, K.B., et al., A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet, 2011. 7(7): p. e1002165.
[109].Xu, Y., et al., Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumor Biology, 2015. 36(3): p. 1643-1651.
[110].Zhang, Q., et al., Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pacific Journal of Cancer Prevention, 2013. 14(4): p. 2311-2315.
[111].Han, Y., et al., Long intergenic non‐coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. Journal of surgical oncology, 2013. 107(5): p. 555-559.
[112].Zhang, E., et al., P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell death & disease, 2014. 5(5): p. e1243.
[113].Wang, Y., et al., CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer letters, 2015. 367(2): p. 122-128.
[114].Li, F. and L.D. Graham, CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. 2012.
[115].Lessard, L., et al., The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. Journal of Investigative Dermatology, 2015. 135(10): p. 2464-2474.
[116].Xia, T., et al., Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Scientific reports, 2015. 5.
[117].Chung, T.-H., et al., Overexpression of deleted in lymphocytic leukemia 1 (DLEU1) significantly induces programmed cell death and inhibits cell proliferation in primary mediastinal B-cell lymphoma (PMBL): DLEU1 may be a tumor suppressor gene in a subset of patients with PMBL. Blood, 2013. 122(21): p. 3852-3852.
[118].Wang, P., et al., Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cellular signalling, 2015. 27(2): p. 275-282.
[119].Yu, W., et al., Tumor suppressor long non-coding RNA, MT1DP is negatively regulated by YAP and Runx2 to inhibit FoxA1 in liver cancer cells. Cellular signalling, 2014. 26(12): p. 2961-2968.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top