|
[1].Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86. [2].Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29. [3].Wadhwa, R., et al., Gastric cancer [mdash] molecular and clinical dimensions. Nature Reviews Clinical Oncology, 2013. 10(11): p. 643-655. [4].Forman, D. and V. Burley, Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Practice & Research Clinical Gastroenterology, 2006. 20(4): p. 633-649. [5].Laur6n, P., The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49. [6].Power, D.G., D.P. Kelsen, and M.A. Shah, Advanced gastric cancer--slow but steady progress. Cancer Treat Rev, 2010. 36(5): p. 384-92. [7].Proserpio, I., et al., Multimodal treatment of gastric cancer. World J Gastrointest Surg, 2014. 6(4): p. 55-8. [8].Pollak, M., Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res (Phila), 2010. 3(9): p. 1060-5. [9].Hosono, K., et al., Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer prevention research, 2010. 3(9): p. 1077-1083. [10].Viollet, B., et al., Cellular and molecular mechanisms of metformin: an overview. Clinical science, 2012. 122(6): p. 253-270. [11].Salani, B., et al., Metformin, cancer and glucose metabolism. Endocrine-related cancer, 2014. 21(6): p. R461-R471. [12].Gonzalez-Angulo, A.M. and F. Meric-Bernstam, Metformin: a therapeutic opportunity in breast cancer. Clinical Cancer Research, 2010. 16(6): p. 1695-1700. [13].Dowling, R.J., et al., Metformin in cancer: translational challenges. Journal of molecular endocrinology, 2012. 48(3): p. R31-R43. [14].Dowling, R.J., et al., Metformin inhibits mammalian target of rapamycin–dependent translation initiation in breast cancer cells. Cancer research, 2007. 67(22): p. 10804-10812. [15].Zakikhani, M., et al., Metformin is an AMP kinase–dependent growth inhibitor for breast cancer cells. Cancer research, 2006. 66(21): p. 10269-10273. [16].Inoki, K., et al., Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes & development, 2003. 17(15): p. 1829-1834. [17].Dowling, R.J., P.J. Goodwin, and V. Stambolic, Understanding the benefit of metformin use in cancer treatment. BMC medicine, 2011. 9(1): p. 33. [18].Baserga, R., F. Peruzzi, and K. Reiss, The IGF‐1 receptor in cancer biology. International journal of cancer, 2003. 107(6): p. 873-877. [19].Shu, Y., et al., Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. The Journal of clinical investigation, 2007. 117(5): p. 1422-1431. [20].Jin, H.-E., et al., Reduced antidiabetic effect of metformin and down-regulation of hepatic Oct1 in rats with ethynylestradiol-induced cholestasis. Pharmaceutical research, 2009. 26(3): p. 549-559. [21].Tzvetkov, M., et al., The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clinical Pharmacology & Therapeutics, 2009. 86(3): p. 299-306. [22].Nair, V., et al., Mechanism of Metformin-dependent Inhibition of Mammalian Target of Rapamycin (mTOR) and Ras Activity in Pancreatic Cancer ROLE OF SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS. Journal of Biological Chemistry, 2014. 289(40): p. 27692-27701. [23].Menendez, J.A. and R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer, 2007. 7(10): p. 763-777. [24].Algire, C., et al., Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocrine-related cancer, 2010. 17(2): p. 351-360. [25].Marini, C., et al., Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle, 2013. 12(22): p. 3490-3499. [26].Salani, B., et al., Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Scientific reports, 2013. 3. [27].Deng, X.-S., et al., Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle, 2012. 11(2): p. 367-376. [28].Feng, Y., et al., Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell death & disease, 2014. 5(2): p. e1088. [29].Hirsch, H.A., D. Iliopoulos, and K. Struhl, Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proceedings of the National Academy of Sciences, 2013. 110(3): p. 972-977. [30].Daniel, C., J. Lagergren, and M. Ohman, RNA editing of non-coding RNA and its role in gene regulation. Biochimie, 2015. 117: p. 22-7. [31].Cheetham, S.W., et al., Long noncoding RNAs and the genetics of cancer. Br J Cancer, 2013. 108(12): p. 2419-25. [32].Taft, R.J., et al., Non-coding RNAs: regulators of disease. J Pathol, 2010. 220(2): p. 126-39. [33].Esteller, M., Non-coding RNAs in human disease. Nat Rev Genet, 2011. 12(12): p. 861-74. [34].Harries, L.W., Long non-coding RNAs and human disease. Biochem Soc Trans, 2012. 40(4): p. 902-6. [35].Dey, B.K., A.C. Mueller, and A. Dutta, Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription, 2014. 5(4): p. e944014. [36].Jia, H., et al., Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna, 2010. 16(8): p. 1478-1487. [37].Ponting, C.P., P.L. Oliver, and W. Reik, Evolution and functions of long noncoding RNAs. Cell, 2009. 136(4): p. 629-641. [38].Prensner, J.R. and A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology. Cancer Discov, 2011. 1(5): p. 391-407. [39].Rinn, J.L. and H.Y. Chang, Genome regulation by long noncoding RNAs. Annu Rev Biochem, 2012. 81: p. 145-66. [40].Nagano, T. and P. Fraser, No-nonsense functions for long noncoding RNAs. Cell, 2011. 145(2): p. 178-81. [41].Pasmant, E., et al., Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer research, 2007. 67(8): p. 3963-3969. [42].Kornienko, A.E., et al., Gene regulation by the act of long non-coding RNA transcription. BMC biology, 2013. 11(1): p. 1. [43].Tsai, M.-C., R.C. Spitale, and H.Y. Chang, Long intergenic noncoding RNAs: new links in cancer progression. Cancer research, 2011. 71(1): p. 3-7. [44].Wang, J., et al., MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed Pharmacother, 2014. 68(5): p. 557-64. [45].Hajjari, M., et al., Up-regulation of HOTAIR long non-coding RNA in human gastric adenocarcinoma tissues. Med Oncol, 2013. 30(3): p. 670. [46].Lee, N.K., et al., Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma. Biochemical and biophysical research communications, 2014. 451(2): p. 171-178. [47].Niinuma, T., et al., Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer research, 2012. 72(5): p. 1126-1136. [48].Li, H., et al., Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget, 2014. 5(8): p. 2318-29. [49].Yang, F., et al., Up‐regulated long non‐coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS Journal, 2012. 279(17): p. 3159-3165. [50].Zhang, E.-B., et al., c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Medical Oncology, 2014. 31(5): p. 1-8. [51].Zhuang, M., et al., The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochemical and biophysical research communications, 2014. 448(3): p. 315-322. [52].Yang, F., et al., Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. Journal of cancer research and clinical oncology, 2013. 139(3): p. 437-445. [53].Zhao, Y., et al., Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncology reports, 2014. 31(1): p. 358-364. [54].Deng, W., et al., TET2 regulates LncRNA-ANRIL expression and inhibits the growth of human gastric cancer cells. IUBMB Life, 2016. [55].Xu, M.-D., et al., Long non-coding RNA LSINCT5 predicts negative prognosis and exhibits oncogenic activity in gastric cancer. Medicine, 2014. 93(28): p. e303-e303. [56].Zhang, X.-w., et al., Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochemical and biophysical research communications, 2015. 462(3): p. 227-232. [57].Wang, Y., et al., Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Molecular and cellular biology, 2014. 34(17): p. 3182-3193. [58].Sun, M., et al., Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol, 2014. 35(2): p. 1065-73. [59].Sun, M., et al., Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer, 2014. 14: p. 319. [60].Han, Y., et al., LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC cancer, 2014. 14(1): p. 1. [61].Gandhy, S.U., et al., Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC. Oncotarget, 2015. 6(28): p. 26359. [62].Lottin, S., et al., Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis, 2002. 23(11): p. 1885-1895. [63].Luo, M., et al., Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer letters, 2013. 333(2): p. 213-221. [64].Tsang, W. and T. Kwok, Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene, 2007. 26(33): p. 4877-4881. [65].Yan, L., et al., Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene, 2015. 34(23): p. 3076-3084. [66].El-Haggar, S.M., et al., Metformin may protect nondiabetic breast cancer women from metastasis. Clin Exp Metastasis, 2016. [67].Guo, Q., et al., Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol Med Rep, 2016. [68].Zaafar, D.K., S.A. Zaitone, and Y.M. Moustafa, Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS One, 2014. 9(6): p. e100562. [69].Kato, K., et al., The anti-diabetic drug metformin inhibits pancreatic cancer cell proliferation in vitro and in vivo: Study of the microRNAs associated with the antitumor effect of metformin. Oncol Rep, 2016. 35(3): p. 1582-92. [70].Bost, F., et al., Metformin and cancer therapy. Current opinion in oncology, 2012. 24(1): p. 103-108. [71].Bao, B., et al., Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer prevention research, 2012. 5(3): p. 355-364. [72].Cerezo, M., et al., Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Molecular cancer therapeutics, 2013. 12(8): p. 1605-1615. [73].Liang, M., et al., FER1L4: a potential plasma biomarker to identify gastric cancer with lymph node invasion. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2016. 9(2): p. 1982-1988. [74].Kato, K., et al., The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther, 2012. 11(3): p. 549-60. [75].Wu, N., et al., Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma, 2010. 58(6): p. 482-490. [76].Isakovic, A., et al., Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci, 2007. 64(10): p. 1290-302. [77].Wang, Z., et al., Radiosensitization of metformin in pancreatic cancer cells via abrogating the G2 checkpoint and inhibiting DNA damage repair. Cancer letters, 2015. 369(1): p. 192-201. [78].Porter, L.A. and D.J. Donoghue, Cyclin B1 and CDK1: nuclear localization and upstream regulators. PROGRESS IN CELL CYCLE RESEARCH., 2003. 5: p. 335-348. [79].Gavet, O. and J. Pines, Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. The Journal of cell biology, 2010. 189(2): p. 247-259. [80].Knoblich, J.A. and C.F. Lehner, Synergistic action of Drosophila cyclins A and B during the G2-M transition. The EMBO journal, 1993. 12(1): p. 65. [81].Liu, D., et al., Cyclin A1 is required for meiosis in the male mouse. Nature genetics, 1998. 20(4): p. 377-380. [82].Montagnoli, A., et al., Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes & Development, 1999. 13(9): p. 1181-1189. [83].Polyak, K., et al., p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes & development, 1994. 8(1): p. 9-22. [84].Sha, J., et al., Vav3, a GEF for RhoA, plays a critical role under high glucose conditions. Endocrinology and Metabolism, 2014. 29(3): p. 363-370. [85].Martin, M.J., et al., Metformin accelerates the growth of BRAFV600E-driven melanoma by upregulating VEGF-A. Cancer discovery, 2012. 2(4): p. 344-355. [86].Hanrahan, V., et al., The angiogenic switch for vascular endothelial growth factor (VEGF)‐A, VEGF‐B, VEGF‐C, and VEGF‐D in the adenoma–carcinoma sequence during colorectal cancer progression. The Journal of pathology, 2003. 200(2): p. 183-194. [87].Mizutani, N., et al., Reduction of insulin signaling upregulates angiopoietin-like protein 4 through elevated free fatty acids in diabetic mice. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association, 2012. 120(3): p. 139-144. [88].Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674. [89].Ooi, C.H., et al., Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet, 2009. 5(10): p. e1000676. [90].Nagini, S., Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol, 2012. 4(7): p. 156-169. [91].Green, A.S., et al., LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle, 2011. 10(13): p. 2115-2120. [92].Kalender, A., et al., Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell metabolism, 2010. 11(5): p. 390-401. [93].Tamura, G., et al., E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. Journal of the National Cancer Institute, 2000. 92(7): p. 569-573. [94].Yoshida, T., et al., Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis. Gastric Cancer, 2013. 16(4): p. 488-497. [95].Matsuoka, T. and M. Yashiro, The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers, 2014. 6(3): p. 1441-1463. [96].Byun, D.S., et al., Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. International journal of cancer, 2003. 104(3): p. 318-327. [97].Oki, E., et al. Impact of PTEN/AKT/PI3K signal pathway on the chemotherapy for gastric cancer. in ASCO Annual Meeting Proceedings. 2006. [98].Krausova, L., et al., Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochemical pharmacology, 2011. 82(11): p. 1771-1780. [99].Zhang, E.-b., et al., Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget, 2014. 5(8): p. 2276-2292. [100].Zhang, E.-b., et al., Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. 2014. [101].Sun, M., et al., Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumor Biology, 2014. 35(2): p. 1065-1073. [102].Sun, M., et al., Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC cancer, 2014. 14(1): p. 1. [103].Emmrich, S., et al., LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Molecular cancer, 2014. 13(1): p. 1. [104].Montes, M., et al., The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence. Nature communications, 2015. 6. [105].Yang, H., et al., Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene, 2015. [106].Gloss, B., et al., ZNF300P1 Encodes a lincRNA that regulates cell polarity and is epigenetically silenced in type II epithelial ovarian cancer. Molecular cancer, 2014. 13(1): p. 1. [107].Takahashi, Y., et al., Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. British journal of cancer, 2014. 110(1): p. 164-171. [108].Meyer, K.B., et al., A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet, 2011. 7(7): p. e1002165. [109].Xu, Y., et al., Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumor Biology, 2015. 36(3): p. 1643-1651. [110].Zhang, Q., et al., Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pacific Journal of Cancer Prevention, 2013. 14(4): p. 2311-2315. [111].Han, Y., et al., Long intergenic non‐coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. Journal of surgical oncology, 2013. 107(5): p. 555-559. [112].Zhang, E., et al., P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell death & disease, 2014. 5(5): p. e1243. [113].Wang, Y., et al., CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer letters, 2015. 367(2): p. 122-128. [114].Li, F. and L.D. Graham, CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. 2012. [115].Lessard, L., et al., The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. Journal of Investigative Dermatology, 2015. 135(10): p. 2464-2474. [116].Xia, T., et al., Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Scientific reports, 2015. 5. [117].Chung, T.-H., et al., Overexpression of deleted in lymphocytic leukemia 1 (DLEU1) significantly induces programmed cell death and inhibits cell proliferation in primary mediastinal B-cell lymphoma (PMBL): DLEU1 may be a tumor suppressor gene in a subset of patients with PMBL. Blood, 2013. 122(21): p. 3852-3852. [118].Wang, P., et al., Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cellular signalling, 2015. 27(2): p. 275-282. [119].Yu, W., et al., Tumor suppressor long non-coding RNA, MT1DP is negatively regulated by YAP and Runx2 to inhibit FoxA1 in liver cancer cells. Cellular signalling, 2014. 26(12): p. 2961-2968.
|