跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林岳正
研究生(外文):Y. J. Lin
論文名稱:API5LX65鋼及銲件之低溫和氫脆特性
論文名稱(外文):Low temperature and hydrogen embrittlement properties of API 5L X65 steel and weldment
指導教授:王星豪
指導教授(外文):S. H. Wang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:132
中文關鍵詞:TMCPAPI 5L X65低溫機械性質氫脆氫滲透
外文關鍵詞:TMCPAPI 5L X65Lower temperature mechanical propertiesHydrogen embrittlementHydrogen permeation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:460
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對相同成分不同軋延製程鋼材(傳統軋延製程SM490C與TMCP製程EH36)及手工電銲SMAW銲件,探索微觀組織型態改變對鋼材在低溫及氫環境下的機械性能影響。另外對以相同TMCP製程而有無微合金添加之鋼材(TMCP EH36與TMCP API 5L X65)及手工電銲銲件,探索在低溫與氫環境下微合金對鋼材機械性能之作用。結果顯示,這三種鋼板多道次銲接之銲冠硬度高於銲根,而且鋼板厚度中心之母材HAZ產生富碳之微帶狀組織,使得HAZ附近貧碳肥粒鐵硬度值下降。三種材料的強度隨著溫度的降低而強度逐漸增強,然而低溫環境對TMCP鋼材延性的影響並不顯著,其母材及銲件隨溫度逐漸下降,伸長量和斷面縮率變化不大。相同成分不同製程之SM490C與EH36鋼板比較,由於TMCP製程使晶粒細化、硬脆析出物顆粒小,因此經過TMCP製程之EH36鋼板母材及銲件之降伏強度與低溫衝擊韌性皆優於傳統熱軋SM490C。比較相同TMCP製程不同合金添加之EH36與API 5L X65鋼板母材及銲件,在低溫環境下添加微合金之API 5L X65拉伸強度與低溫衝擊韌性高於未添加微合金之EH36。特殊地,三種鋼板在多道次銲接後,由於母材HAZ中粗晶區之脆硬麻田散鐵被再熱成延性較佳之細晶粒肥粒鐵,使得其HAZ衝擊值高於母材。
在氫脆方面,控制軋延加速冷卻製程的細化等軸晶粒,除提高材料延性外,在不同充氫濃度下,API 5L X65平行軋延方向除外,三種材料的強度不受充氫所影響,而且強度大小依次為API 5L X65最優、EH36次之、SM490C為後。除SM490C銲件其降伏強度隨電流密度升高而增強外,銲件其強度亦依次為API 5L X65最優、EH36次之、SM490C為後。氫環境對延性的影響極為明顯,母材及銲件均隨著電流密度增加,伸長量和斷面縮率都相對降低。在未充氫前延性,EH36與SM490C優於API 5L X65,但充氫後延性,反而API 5L X65母材及銲件表現出較優異的抗氫脆能力,EH36次之,SM490C較差。
在相同成分不同軋延製程下,微觀組織型態不同,導致帶狀組織之傳統控制軋延SM490C鋼沿厚度方向的擴散速率小於隨機均勻分佈微觀組織之TMCP製程EH36鋼。然而在相同TMCP製程,有無添加微合金的條件下,含有Nb、V、Cu、Al等微合金之API 5L X65鋼,其擴散速率與滲透速率都比未添加合金之EH36鋼小。其原因可能是鈮、釩、銅、鋁等元素與碳、氮形成碳氮化合物之氫陷阱。氫原子微印實驗結果顯示,在氫滲透初期氫係以晶界、介在物與肥粒鐵基地之界面等為氫原子滲透途徑。
The purpose of this study focuses on two aspects of low-temperature mechanical properties of steels and its SMAW weldments: (1) the effect of microstructural morphology on the low temperature mechanical properties of steels produced by process, (2) the effect of microalloying addition on the low temperature and hydrogen environment mechanical properties of steels under the same Thermo-mechanically Controlled Processed (TMCP) with accelerated cooling. The results indicate that the hardness of the root in the multipass weld metal was lower than the top bead for these three steels. Furthermore the hardness in the HAZ of middle thickness presented softening. Lower value was ascribed to the post heat treatment of successive passes during multi-pass welding. The ultimate tensile strength and yield strength of experimental steels increased with decreasing temperature, but their ductility almost was remained unchanged. The yield strength and impact toughness of TMCP EH36 steels and its weldments was better than that of the traditional controlled rolled SM490C. It attributes to the fine equiaxed grain size produced by accelerated cooling process. The superior strength and impact toughness of micro-alloy addition of API 5L X65 steels and its weldments to EH36 results from very fine precipitates superimposed with fine equiaxed grain and the solid solution strengthing. Especially, the impact toughness of base metal HAZ was higher than parent metal due to that the brittle grain-coarsened zone was reheated to form better toughness of fine grain ferrite during multipass welding.
The results show that the ultimate tensile strength and yield strength for the base metals and weldments of all three steels (TMCP API 5L X65, TMCP EH36, and SM490C) were independent of increasing hydrogen-charging current density. The superior strength and ductility of TMCP API 5L X65 after hydrogen charging can be attributed to the solid solution strengthening and fine precipitates superimposed on the equiaxed refined grains. The relative hard band structures in SM490C steels and weldments were the major cause that rendered the lower ultimate tensile strength and elongation inevitable.
Hydrogen permeation experiments were conducted using a double electrolytic cell, current density controlled at 10mA/cm2, containing a 0.1N NaOH solution in both compartments. Under the same composition, the hydrogen diffusivity along the through-surface direction of that in the equiaxed grain EH36 steel produced by TMCP processes with accelerated cooling render a lower value in a banded structure of SM490C steel. Whereas, the hydrogen diffusivity and hydrogen permeability of microallyed API 5L X65 steel were lower than EH36 steel with no alloying. The reason could be that the sites of Carbides and Nitrides of Niobium, Vanadium, Copper and Aluminum trapped the hydrogen. Hydrogen microprint technique confirmed the main diffusion path and trapping sites are the grain boundary, carbide/ferrite interface in pearlite at incipiency during hydrogen permeation. The carbide and inclusion-ferrite interface is the main trapping sites and short diffusion path for hydrogen in steels.
1. 前言 1
2. 文獻回顧 3
2.1. TMCP鋼板之簡介 3
2.2. TMCP鋼板的銲接性 7
2.3. 低溫環境下之材料機械性能 13
2.4. 鋼鐵之氫脆現象 14
2.5. 電化學氫滲透實驗理論 21
2.6. 氫原子微印技術 24
3. 實驗方法 40
3.1. 銲件之銲接方式 40
3.2. 金相觀察 41
3.3. 硬度試驗 41
3.4. 低溫拉伸試驗 41
3.5. 低溫衝擊試驗 42
3.6. 充氫拉伸試驗 42
3.7. 氫滲透實驗 43
3.8. 氫原子微印技術 45
4. 結果與討論 61
4.1. 手工電銲TMCP鋼銲件之低溫機械性質 61
4.2. TMCP鋼及銲件在氫環境下之抗拉性質 73
4.3. 氫滲透與氫原子微印技術 84
5. 結論 125
5.1. 結論 125
5.2. 未來工作 127
參考文獻 129
1. 王錫欽,"高功能建築結構用鋼板的發展",銲接與切割雙月刊,第四卷第五期,(1994)p.25
2. K. Tsukada, Y. Yamazaki, S. Kosuge and T. Tokunaga, Nippon Kokan Technical Report Overseas, No.35 (1982), p.35
3. I. Watanabe, M. Suzuki, H. Tagawa, Y. Kunisada, Y. Yamazaki and N. Iwasaki, Nippon Kokan Technical Report Overseas, No.47 (1986), p.52
4. 王錫欽,"鋼板之線上加速冷卻處理及其產品-TMCP鋼板介紹",機械月刊,第十八卷第三期,(1992) p.254
5. T. Funakosi, T. Tanaka, S. Ueda, M. Ishikawa, N. Koshizuka and K. Kobayashi, Trans, ISIJ, Vol.16 (1976) p.48
6. I. R. Harvey and J. G. Byrne, Review of Progress in Quantitative Nondestructive Evaluation ,8B (1989) p.1179
7. 蘇貴福,謝肇琨,"TMCP鋼板銲接相關特性介紹",銲接與切割雙月刊,第五卷第五期,(1995)p.19
8. S. Okaguchi, T. Kushida, Y. Fukada, and S. Tanaka, The Sumitomo Search No.43 (1990) p.25
9. S. Yoshimura, K. Amano, T. Uemura, H. Nishizaki, Y. Saito, M. Sekizawa, Kawasaki Steel Technical Report No.17 (1987) p.48
10. 楊哲民,王錫欽,謝榮淵,李誌哲,"船用高張力鋼板(TMCP)之研究(一)母材特性研究",中船季刊,第十四卷第三期,(1993) p.203
11. S. Ikeda, S. Tone, S. Takashima and H. Kaji, ISIJ, Vol.30, No.8, (1990) p.600
12. O. Tanigawa, H. Ishii, N. Itakura, K. Amano, Y. Nakao and F. Kawabata, Kawasaki Steel Technical Report, No.29 (1993) p.54
13. K. Matsumoto, K. Akao, T. Taira, K. Arikata, M. Niikura and Y. Naganawa, Nippon Kokan Technical Report Overseas No.46 (1986) p.35
14. S. Lee, B. C. Kim, and D. Kwon, Metallurgical Transactions A, Vol.23A (1992) p.2803
15. C. C. Chen and Abe Pollack, Microalloying International, Inc., ASM Hand Book, Vol.6, p.416
16. Donald R. Askeland, The Science and Engineering of Materials, 3rd edition, (PWS Publishing Company, Boston, 1994) p.235
17. Y. Onoe, M. Umeno, Y. Sogo and H. Morikawa, Nippon Steel Technical Report, No.22 (1983) p.1
18. Donald R. Askeland, The Science and Engineering of Materials, 3rd edition, (PWS Publishing Company, Boston, 1994) p.264
19. J. M. Gray, Metallurgical Transactions, Vol.3 (1972) p.1495
20. M. Djahazi, X. L. He, J. J. Jonas, and W. P. Sun, Metallurgical Transactions A, Vol.23A (1992) p.2111
21. H. Y. Liou, R. I. Shieh, F. I. Wei, and S. C. Wang, Corrosion, Vol.49 No.5 (1993) p.389
22. A. zarei Hanzaki, P. D. Hodgson, and S. Yue, Metallurgical and Materials Transactions A, Vol.28A (1997) p.2405
23. S. F. Medina and A. Quispe, ISIJ International, Vol.36 (1996) No.10, p.1295
24. P. R. Vishnu, Lulea University of Technology, Sweden, ASM Hand Book, Vol.6, p.70
25. K. E Easterling, Introduction to the Physical Metallurgy of Welding, (Butterworths Monographs in Materials, 1983)
26. D. A. Porter and K. E. Easterling, Phase Transformations in Metal and Alloys, 2nd edition, (Chapman & Hall, London, 1997)
27. Richard W. Herzberg, Deformation and Fracture Mechanics of Engineering Materials, Fourth Edition, (John Wiley & Sons, Inc. New York, 1995)
28. W. H. Johnson, Hydrogen Damage, edit by C. D. Beachem, (1977) p.1
29. D. Warren, Materials Performance, Vol.26, No.1 (1987) p.38
30. John P. Hirth, Metallurgical Transactions A, Vol.11A (1980) p.861
31. I. M. Bernstein, Materials Science Engineering, Vol.6 (1976) p.1
32. Denny A. Jones, Principles and Prevention of Corrosion, 2nd edition, (Prentice-Hall, 1996)
33. 吳建國,"金屬材料在能源工業中氫破壞的問題",材料科學,Vol.8B, (1986) p.13
34. T. Asaoka, Metal-Hydrogen System, edited by T. N. Veeiroglo and Pergamon Press, (1982) p.197
35. G. M. Pressouyre, Metallurgical Transactions A, Vol.14A, (1983) p.2189
36. G. M. Pressouyre, Metallurgical Transactions A, Vol.10A, (1979) p.1571
37. G. M. Pressouyre, Acta Metallurgica, Vol.28, (1980) p.895
38. G. M. Pressouyre, J. P. Fidelle and R. A. Laurent, Hydrogen Effects in Metals, edited by I. M. Bernstein and A. W. Tomphson, (1981) p.27
39. R. Chiba, K. Omnishi, K. Ishii, and K. Maeda, Corrosion, Vol.41, (1985) p.415
40. Mars. G. Forntana, Corrosion Engineering, 3rd edition, (McGraw-Hill, New York, 1987) p.146
41. 劉倫、鄭永平、張統一、褚武揚、蕭紀美,"氫在金屬中的擴散和氫滲透",防蝕工程,第九卷第四期,(1995) p.245
42. B. E. Wild and T. Shimada, Chines J. Materials Science, Vol. 19, (1987) p.107
43. F. D. Fassini, M. A. Zampronio and P. E. V. de Miranda, Corrosion Science, Vol.35, (1993) p.549
44. M. A. Zampronio, F. D. Fassini, and P. E. V. de Miranda, Surface and Coatings Technology, Vol.70 (1995) p.203
45. M. A. Zampronio, A. Filevich and P. E. V. de Miranda, Journal of Materials Scince Letters, Vol.15 (1996) p.810
46. J. M. Chen and J. K. Wu, Corrosion Science, Vol.33, (1992) p.657
47. J. M. Chen and J. K. Wu, Plating and Surface Finishing, Vol.79 (1992) p.74
48. H. L. Lee and S. L. I. Chan, Materials Science and Engineering, A142 (1991) p.193
49. S. L. I. Chan, H. L. Lee, and J. R. Yang, Hydrogen Effects on Materials Behavior, edited by N. R. Moody and A. W. Thompson, The Minerals, Metals & Materials Society, (1990) p.145
50. L. Tau, S. L. I. Chan and C. S. Shin, Hydrogen Effects on Materials, edited by A. W. Thompson and N. R. Moody, The Minerals, Metals & Materials Society, (1996) p.475
51. L. Tau, S. L. I. Chan, Materials Letters, Vol.29 (1996) p.143
52. T. E. P''erez and J. Ovejero-Garcia, Scripta Metallurgica, Vol.16 (1982) p.161
53. J. Ovejero-Garcia, Journal of Materials Science, Vol.20 (1985) p.2623
54. 魯萬鈞,國立台灣海洋大學碩士論文,1995
55. J. P. Laurent and G. Lapasset, The International Journal of Applied Radiation and Isotopes, Vol.24, (1973) p.213
56. H. Tagawa, M. Kurihara, T. Abe, S. Shimada, T. Ikoma and N. Iwasaki, Nippon Kokan Technical Report Overseas, No.50 (1987) p.27
57. T. Kitada, K. Fukuda, N. Fukushige, K. Okamoto, K. Mukai and M. Watanabe, Nippon Kokan Technical Report Overseas, No.47 (1986) p.58
58. H. Tamehiro, N. Yamada and H. Matsuda, Transactions ISIJ, Vol.25 (1985) p.54
59. Y. Kikuta, T. Araki, A. Hirose and J. Y. Xiu, Technology Reports of The Osaka University, Vol.37, No.1873 (1987) p.65
60. N. K. Ballinger & R. W. K. Honeycombe, Metallurgical Transactions A, Vol.11A (1980) p.412
1. 劉宏義,謝榮淵,魏義豐,"微合金元素對鋼材抗氫引誘破裂的效應",防蝕工程,第五卷第三期 (1991) p.14
62. 劉宏義,廖啟民, Chinese Journal of Materials Science, Vol.23 ,No.2 (1991) p.124
63. Fukuyama Works, Technical Research Center, Nippon Kokan Technical Report Overseas, No.46 (1986) p.106
64. Y. Hotii, M. Wakabayashi, S. Ohkita, M. Namura, Nippon Steel Technical Report, No.37 (1988) p.1
65. 敖仲寧,林政德,郭飛虎,"TMCP鋼高熱輸入量銲接性模擬研究",銲接與切割,第六卷第五期,(1996)p.1
66. D. S. Dabkowski, Materials Engineering Quart. (1976) p.22
67. D. Dobi, Mustafa Kocak, Blagoj I. Petrovski, and F. Hanus, Materials Engineering Volume III, ASME (1994) p.315
68. H.Inagaki, M.Tranimura, I.Matsushima, T.Nishimura, Tracsaction ISIJ 18 (1978) p.149
69. 何開發,國立台灣海洋大學碩士論文,1997
70. R. Kirchheim, Acta Metallurgica, Vol.35 (1987) p.1481
71. R. C. Brouwer and R. Griessen, Physical Review, B40 (1988) p.1481
72. S. Zajac, T. Siwecki, B. Hutchinson and M. Attlegard, Metallurgical Transactions A, 22A (1991) p.2681
73. T. Tsuru and R. M. Latanision, Scripta Metallurgica, Vol.16 (1982) p.575
74. W. C. Luu, J. K. Wu, Materials Letters, Vol.24 (1995) p.175
75. 張碩哲,國立台灣大學碩士論文,1997
76. J. Yao and J. R. Cahoon, Acta Metallurgica, Vol.39 (1991) p.111
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top