跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃欣儀
研究生(外文):Hsin-Yi Huang
論文名稱:尿皮質素抑制神經幹細胞增生之機轉
論文名稱(外文):Molecular Mechanism Undelying Urocortin-Induced Anti-Proliferation in Neural Stem Cells
指導教授:王美人郭重雄郭重雄引用關係
指導教授(外文):Mei-Jen WangJon-Son Kuo
學位類別:博士
校院名稱:慈濟大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:117
中文關鍵詞:尿皮質素神經幹細胞
外文關鍵詞:urocortinneural stem cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
在胚胎大腦皮質發育時期,神經幹細胞的增生分化及細胞週期的進行與跳出需要被精確調控以確保有適當數量的神經元產生。尿皮質素為神經胜肽促腎上腺皮質素釋放激素中的一員,已知尿皮質素在成體大腦中有許多功能,包含調節壓力反應、神經保護、免疫抑制及生長促進,但是尿皮質素在胚胎時的表現及作用仍不清楚。
在本研究中發現尿皮質素及其接受器表現在發育大腦皮質增生區與神經幹細胞內,因此意味著尿皮質素參與神經幹細胞分裂增生。在胚胎發育時期,尿皮質素mRNA或是蛋白質之表現皆可從E12.5天開始一直持續至出生後第一天,此時也正是大腦皮質發育旺盛之時期。分離胚胎大腦皮質內的神經幹細胞並進行體外培養,發現尿皮質素會降低神經幹細胞增生及自我更新的能力,並且使生長分數及標記指數下降。此外,尿皮質素造成標記指數下降的現象同樣也在ex vivo培養的胚胎大腦皮質中被觀察到。分析神經幹細胞在細胞週期分佈的比例,發現尿皮質素處理的神經幹細胞停留在G0/G1 phase的比例增加,進一步以Ki67蛋白質的表現來區分G0及G1 phase,發現尿皮質素增加神經幹細胞進入G0 phase的比例。此增加的原因有可能是因為尿皮質素促進細胞跳出細胞週期所致。此外,尿皮質素也具有延長G1 phase時間之作用,進而導致進行細胞週期的時間增加。
作用機轉研究中顯示尿皮質素可藉由增加p21的表現,使CDK2活性下降,因而減少Rb磷酸化而造成細胞週期停滯。此外,實驗中也證明尿皮質素具有抑制組織蛋白脫乙醯酶活性的能力,使細胞表現Krüppel-like factor 4 (KLF4)進而活化p21基因的表現。減少KLF4表現可遏阻由尿皮質素誘發之p21限制細胞週期進行的現象。更進一步發現,尿皮質素促使p21表現在跳出細胞週期之神經幹細胞中,並且在分化培養的條件下,可增加神經幹細胞分化成神經細胞的比例。這些結果符合Calegari等人提出的假說,即延長G1 phase時間會促使神經幹細胞離開細胞週期,讓神經幹細胞從增生轉換成分化。因此推論尿皮質素在胚胎大腦皮質中可能作為一種抗分裂素,可與其他生長因子共同調節神經幹細胞增生與分化,促使大腦皮質發育完成。
During corticogenesis, the proliferation and differentiation in neural stem cells are regulated precisely by a balance of extrinsic and intrinsic factors which direct progression into or exit from the cell cycle, and then determine the cortical cytoarchitecture. Urocortin (UCN), a member of the corticotrophin releasing hormone (CRH), is widely expressed in the adult brain and is involved in the functions of neuroprotection, stress response, immune suppression, and dendrite outgrowth. Although limited studies indicate UCN is expressed in the developing cortex, its expression and function are not clear in the embryonic brain. This investigation particularly examined the presence of UCN and its receptors in neural stem cells (NSCs) and clarified the mechanisms underlying the anti-proliferation effect of UCN in NSCs.
This investigation demonstrated that UCN and its receptors CRHR1 and CRHR2 were present in (NSCs). During cortical development, the cortex expressed mRNA and protein from embryonic day 12.5 to postnatal day 1, implying that UCN might be involved in regulation of NSCs proliferation. Treatment of cultured NSCs with UCN reduced cell proliferation, self-renewal potential, growth fraction, and labeling index. The deceased labeling index was also observed in ex vivo cultured brain slice. Flow cytometry analysis revealed that UCN increased the population of NSCs arrested in G0/G1 phase. Ki67 staining for distinguishing these two phases demonstrated that UCN induced more NSCs stayed in G0 phase. This could be the consequence of cell cycle exit induced by UCN. In addition, UCN selectively increased the duration of G1 phase, resulting in prolonging cell cycle progression.
Mechanistic studies in NSCs showed that UCN increased the expression of p21, leading to inactivation of CDK2, and ultmately hypophosphorylation of Rb. Interestingly, UCN directly inhibited histone deacetylase (HDAC) activity, resulting in histone hyperacetylation which transactivated expression of Krüppel-like factor 4 (Klf4) and p21. Knockdown of Klf4 resulted in downregulation of p21-mediated cell-cycling restriction caused by UCN. Furthermore, UCN upregulated p21 in NSCs, thus catalyzing their exit from the cell cycle. Results also showed that UCN promoted neuronal differentiation. These findings are consistent with a previous hypothesis, that lengthening G1 phase of NSCs promotes the switch from proliferation to differentiation, proposed by Calegari et al. These results suggest that UCN might be an anti-mitogen in developing cortex to regulate NSCs proliferation during corticogenesis.
中文摘要………………………………………………………………I
英文摘要………………………………………………………………III
目錄……………………………………………………………………V
圖表目錄………………………………………………………………IX
第一章 緒論
第一節 大腦皮質發育……………………………………………1
第二節 細胞週期………………………………………………2
第三節 細胞週期調控神經幹細胞增殖分化……………………4
第四節 調控因子影響神經幹細胞之細胞週期……………………5
第五節 尿皮質素及其接受器於腦區之分佈與功能……………8
第六節 尿皮質素及其接受器在胚胎腦中的表現………………10
第七節 研究動機與目標…………………………………………10
第二章 實驗材料與方法
第一節 大腦皮質神經球體培養…………………………………12
第二節 細胞增生試驗…………………………………………13
第三節 神經幹細胞自我更新試驗(Self-renewal assay)………14
第四節 細胞免疫染色……………………………………………15
第五節 組織免疫染色……………………………………………16
第六節 大腦皮質組織型培養(Organotypic culture)……………17
第七節 Bromodeoxyuridine incorporation免疫染色………………18
第八節 細胞分化測試…………………………………………………18
第九節 尿皮質素螢光標記………………………………………18
第十節 細胞週期動態測量………………………………………20
第十一節 Terminal deoxynucleotide transferase-mediated UTP nick end labeling (TUNEL)分析………………………………………………………22
第十二節 西方點墨法……………………………………………22
第十三節 酵素聯結免疫吸附分析法…………………………24
第十四節 即時反轉錄-聚合酶連鎖反應(Real-time Reverse Transcription-Polymerase Chain Reaction, RT-PCR)………………………………………25
第十五節 干擾RNA轉染………………………………………26
第十六節 冷光活性試驗…………………………………………27
第十七節 激酶活性試驗…………………………………………28
第十八節 流式細胞儀分析………….……………………………29
第十九節 組織蛋白脫乙醯酶活性試驗…………………………29
第二十節 統計分析………………………………………………30
第三章 實驗結果
第一節 尿皮質素及其接受器在胚胎大腦皮質中的表現………31
第二節 尿皮質素及其接受器在培養的神經幹細胞中之表現…32
第三節 尿皮質素降低神經幹細胞增生…………………………32
第四節 尿皮質素降低神經幹細胞之生長分數及標記指數……33
第五節 尿皮質素降低大腦皮質切片中之神經幹細胞的增生…34
第六節 尿皮質素阻止神經幹細胞進入S phase………………35
第七節 尿皮質素增加神經幹細胞進入G0 phase……………36
第八節 尿皮質素經由增加G1 phase時間使細胞週期延長…36
第九節 尿皮質素促進神經幹細胞跳出細胞週期……………37
第十節 尿皮質素增進p21-Rb訊息傳遞而造成細胞分裂比例下降…38
第十一節 尿皮質素增進p21表現促使神經幹細胞跳出細胞週期…40
第十二節 尿皮質素抑制組織蛋白脫乙醯酶活性參與了p21調控之抑制增生作用……41
第十三節 尿皮質素抑制組織蛋白脫乙醯酶活性可促進KLF4表現,進而轉錄活化p21表現……………44
第十四節 KLF4參與調控神經幹細胞增生………………………45
第十五節 尿皮質素促進神經幹細胞分化………………………45
第十六節 尿皮質素表現在E16.5天大腦皮質之已分化區………46
第四章 討論
第一節 尿皮質素在發育大腦皮質中可做為一種抗分裂素……47
第二節 尿皮質素對細胞週期動態之影響……………………49
第三節 p21調控細胞週期………………………………………51
第四節 p21促使細胞跳出細胞週期……………………………53
第五節 組織蛋白脫乙醯酶調控神經幹細胞增生與分化………55
第六節 組織蛋白脫乙醯酶與KLF4及p21之間的關係……………57
第七節 總結………………………………………………………58
第五章 未來展望………………………………………………………59
第六章 參考文獻…………………………………………………61
Abuirmeileh, A., R. Lever, A.E. Kingsbury, A.J. Lees, L.C. Locke, R.A. Knight, H.S. Chowdrey, C.S. Biggs, and P.S. Whitton. 2007. The corticotrophin releasing factor-like peptide urocortin reverse key deficits in two rodent models of Parkinson;s disease. Eur. J. Neurosci. 26: 417-423.
Arsenijevic, Y., S. Weiss, B. Schneider, and P. Aebischer. 2001. Insulin-like growth factor is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J. Neurosci. 21: 7194-7202.
Bach, M.A., Z. Shen-Orr, W.L. Lowe Jr, C.T. Jr. Roberts, and D. LeRoith. 1991. Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res. Mol. Brain Res. 10: 43-48.
Balasubramaniyan, V., E. Boddeke, R. Bakels, B. Küst, S. Kooistra, A. Veneman, and S. Copray. 2006. Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience. 143: 939-51.
Bayer, S.A., and J. Altman. 2004. Development of the Telecephalon: Neural Stem Cells, Neurogenesis, and Neural Migration. In The Rat Nervous System. G. Paxinos, editor. Elsevier Academic Press, London. 27-73.
Bittencourt, J.C., J. Vaughan, C. Arias, R.A. Rissman, W.W. Vale, and P.E. Sawchenko. 1999. Urocortin expression in rat Brain: evidence against a pervasive relationship of Urocortin-containing projections with targets bearing type 2 CRF receptors. J. Comp. Neurol. 415: 285-312.
Britz, O., P. Mattar, L. Nguyen, L.M. Langevin, C. Zimmer, S. Alam, F. Guillemot, and C. Schuurmans. 2006. A role for proneural genes in the maturation of cortical progenitor cells. Cereb. Cortex. 16(Suppl 1): i138-151.
Burrows, R.C., D. Wancio, P. Levitt, and L. Lillien. 1997. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron. 19: 251–267.
Calegari, F., W. Haubensak, C. Haffner, and W. Huttner. 2005. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25: 6533-6538.
Calegari, F., and W. Huttner. 2003. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116: 4947-4955.
Cameron, H.A., and R. McKay. 1998. Stem cell and neurogenesis in the adult brain. Curr. Opin. Neurobiol. 8: 677-680.
Campos, L., D.P. Leone, J.B. Relvas, C. Brakebusch, R. Fässler, U. Suter, and C. ffrench-Constant. 2004. ?? integrins activate a MAPK signaling pathway in neural stem cells that contributes to their maintenance. Development. 131: 3433-3444.
Carey, R.G., B. Li, and E. DiCicco-Bloom. 2002. Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. J. Neurosci. 22: 1583-1591.
Carlson, K.W., S.S. Nawy, E.T. Wei, W. Sadee, V.A. Filov, V.V. Rezsova, A. Slominski, and J.M. Quillan. 2001. Inhibition of mouse melanoma cell proliferation by corticotropin-releasing hormone and its analogs. Anticancer Res. 21: 1173-1179.
Caviness Jr, V.S., T. Takahashi, and R.S. Nowakowski. 1999. The G1 restriction point as critical regulator of neocortical neuronogenesis. Neurochem. Res. 24: 497-506.
Caviness Jr, V.S., T. Goto, T. Tarui, T. Takahashi, P.G. Bhide, and R.S. Nowakowski. 2003. Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb. Cortex. 13: 592-598.
Chalmers, D.T., T.W. Lovenberg, and E.B. De Souza. 1995. Localization of novel corticotrophin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in the rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci. 15: 6340-6350.
Chen, Z.Y., S. Rex, and C.C. Tseng. 2004. Krüppel-like factor 4 is transactivated by butyrate in colon cancer cells. J. Nutr. 134: 792-798.
Cho, S.D., S. Chintharlapalli, M. Abdelrahim, S. Papineni, S. Liu, J. Guo, P. Lei, A. Abudayyeh, and S. Safe. 2008. 5,5'-Dibromo-bis(3'-indolyl)methane induces Krüppel-like factor 4 and p21 in colon cancer cells. Mol. Cancer Ther. 7: 2109-20.
Coqueret, O. 2003. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 13: 65-70.
Chrousos, G.P. 1995. The hypothalamic-Pituitary-Adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 332: 1351-1363.
Cunningham, J.J., and M.F. Roussel. 2001. Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ. 12: 387-396.
Dang, D.T., J. Pevsner, and V.W. Yang. 2000. The biology of the mammalian Krüppel-like family of transcription factors. Int. J. Biochem. Cell Biol. 32: 1103-1121.
Dang, D.T., C.S. Mahatan, L.H. Dang, I.A. Agboola, and V.W. Yang. 2001. Expression of the gut-enriched Krüppel-like factor (Krüppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2. Oncogene. 20: 4884-4890.
Davie, J.R. 2003. Inhibition of histone deacetylase activity by butyrate J. Nutr. 133: 2485S–2493S.
Delalle, I., T. Takahashi, R.S. Nowakowski, L.H. Tsai, and V.S. Caviness Jr. 1999. Cyclin E-p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization. Cereb. Cortex. 9: 824-832.
Dehay, C., P. Savatier, V. Cortay, and H. Kennedy. 2001. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci. 21: 201-214.
Dehay, C., and H. Kennedy. 2007. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8: 438-450.
Dicicco-Bloom, E., N. Lu, J.E. Pintar, and J, Zhang. 1998. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann. N. Y. Acad. Sci. 865: 274-289.
Donaldson, C.J., S.W. Sutton, M.H. Perrin, A.Z. Corrigan, K.A. Lewis, J.E. Rivier, J.M. Vaughan, and W.W. Vale. 1996. Cloning and characterization of human urocortin. Endocrinology. 137: 2167-2170.
Evans, P.M, X. Chen, W. Zhang, and C. Liu. 2000. KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin. Mol. Cell Biol. 30: 372-381.
Fasano, C.A., J.T. Dimos, N.B. Ivanova, N. Lowry, I.R. Lemischka, and S. Temple. 2007. shRNA Knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell. 1: 87-99.
Ferguson, K.L., S.M. Callaghan, M.J. O’Hare, D.S. Park, and R.S. Slack. 2000. The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. J. Biol. Chem. 275: 33593-33600.
Ferguson, K.L., and R.S. Slack. 2001. The Rb pathway in neurogenesis. Neuroreport. 12: A55-A62.
Ferguson, K.L., J.L. Vanderluit., J.M. Hébert, W.C. Mclntosh, E. Tibbo, J.G. Maclaurin, D.S. Park, V.A. Wallace, M. Vooijs, S.K. McConnell, and R.S. Slack. 2002. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J. 21: 3337-3346.
Futamura, M., Y. Monden, T. Okabe, J. Fujita-Yoshgaki, S. Yokohama, and S. Nishimura. 1995. Tricostatin A inhibitd both ras-induced neurite outgrowth of PC12 cells and morphological transformation of NIH3T3 cells. Oncogene. 10: 1119-1123.
Gage, F.H. 2000. Mammalian neural stem cells. Science. 287: 1433-1438.
Göz, M., and W.B. Huttner. 2005. The cell biology of neurogenesis. Nat. Rev. 6: 777-788.
Ha, B.K., G.A. Bishop, J.S. King, and R.W. Burry. 2000. Corticotrophin releasing factor induces proliferation of cerebellar astrocyte. J. Neurosci. Res. 62: 789-798.
Hatakeyama, J., and R. Kageyama. 2006. Notch1 expression in spatiotemporally correlated with neurogenesis an negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb. Cortex. 16: i132-i137.
Hatayama, H., J. Iwashita, A. Kuwajima, and T. Abe. 2007. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem. Biophys. Res. Commun. 356: 599-603.
Haubensak, W., A. Attardo, W. Denk, and W.B. Huttner. 2004. Neurons arise in the basal neuroepithelium of the early mammalian telecephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA. 101: 3196-3201.
Hodge, R.D., A.J. D'Ercole, and J.R. O'Kusky. 2004. Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J. Neurosci. 24: 10201-10210.
Huang, H.Y., S.Z. Lin, W.F. Chen, K.W. Li, J.S. Kuo, and M.J. Wang. 2009. Urocortin modulates dopaminergic neuronal survival via inhibition of glycogen synthase kinase-3? and histone deacetylase. Neurobio. Aging. doi: 10.1016/j.neurobiolaging. 2009.09.010.
Kabos, P., A. Kabosova, and T. Neuman. 2002. Blocking HES1 expression initiates GABAergic differentiation and induced the expression of p21CIP/WAF1 in human neural stem cells. J. Biol. Chem. 277: 8763-8766.
Kaczynski, J., T. Cook, and R. Urrutia. 2003. Sp1- and Krüppel-like transcription factors. Genome Biol. 4: 206.
Kageyama, R., T. Ohtsuka, J. Hatakeyama, and R. Ohsawa. 2005. Roles of bHLH genes in neural stem cell differentiation. Exp. Cell Res. 3062: 343-348.
Kee, H.J., and H. Kook. 2009. Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J. Mol. Cell. Cardiol. 47: 770-780.
Keegan, C.E., J.P. Herman, I.J. Karolyi, K.S. O'Shea, S.A. Camper, and A.F. Seasholtz. 1994. Differentiatial expression of corticotrophin-releasing hormone in developing mouse embryos and adult brain. Endocrinology. 134: 2547-2555.
King, J.S., and G.A. Bishop. 2003. Localization of the type 1 corticotrophin releasing factor receptor (CRF-R1) in the embryonic mouse cerebellum. J. Neurocytol. 32: 305-316.
Kippin, T.E., D.J. Martens, and D. van der Kooy. 2005. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19: 756-767.
Knudsen, E.S., and J.Y. Wang. 1996. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J. Biol. Chem. 271: 8313-8320.
Kozicz, T., H. Yanaihara, and A. Arimura. 1998. Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J. Comp. Neurol. 391: 1-10.
Kukekov, G.V., E.D. Laywell, O.N. Suslov, L.B. Thomas, B. Scheffler, K. Davis, T.F. O’Brien, M. Kusakabe, and D.A. Steindler. 1999. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 156: 333-344.
Lange, C., W.B. Huttner, and F. Calegari. 2009. Cdk4/cyclin D1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell. 5: 320-331.
Lagger, G., D. O'Carroll, M. Rembold, H. Khier, J. Tischler, G. Weitzer, B. Schuettengruber, C. Hauser., R. Brunmeir, T. Jenuwein, and C. Seiser. 2002. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21: 2672-2681.
Lazar, L.M., and M. Blum. 1992. Regional distribution and developmental expression of epidermal growth factor and transforming growth factor-alpha mRNA in mouse brain by a quantitative nuclease protection assay. J. Neurosci. 12: 1688-1697.
Lewis, K., C. Li, M. H. Perrin, A. Blount, K. Kunitake, C. Donaldson, J. Vaughan, T.M. Reyes, J. Gulyas, W. Fischer, L. Bilezikjian, J. Rivier, P.E. Sawchenko, and W.W. Vale. 2001. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. USA. 98: 7571-7575.
Li, W., G. Sun, S. Yang, Q. Qu, K. Nakashima, and Y. Shi. 2008. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain. Mol. Endocrinol. 22: 56-64.
Lillien, L., and H. Raphael. 2000. BMP and FGF regulate the development of EGF-responsive neural progenitor cells. Development. 127: 4993-5005.
Lukaszewicz, A., P. Savatier, V. Cortay, H. Kenndy, and C. Dehay. 2002. Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells. J. Neurosci. 22: 6610-6622.
Lukaszewicz, A., P. Savatier, V. Cortay, P. Giroud, C. Huissoud, M. Berland, H. Kennedy, and C. Dehay. 2005. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron. 47: 353-364.
Lovenberg, T.W., D.T. Chalmers, C. Liu, and B.L. De Souza. 1995. CRF2? and CRF2? receptor mRNAs are differently distributed between the rat central nervous system and peripheral tissues. Endocrinology. 136: 4139-4142.
MacDonald, J.L., and A.J Roskams. 2008. Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev. Dyn. 237: 2256-2267.
MacDonald, J.L., and A.J. Roskams. 2009. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog. Neurobiol. 88: 170–183.
Mitsuhashi, T., Y. Aoki, Y.Z. Eksioglu, T. Takahashi, P.G. Bhide, S.A. Reeves, and V.S. Caviness Jr. 2001. Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc. Natl. Acad. Sci. USA. 98: 6435-6440.
Morgan, D.O. 2007. The cell cycle. In The Cell Cycle: Principles of control. E. Lawrence editor. New Science Press Ltd, London. 1-9.
Nieto, M., E.S. Monuki, H. Tang, J. Imitola, N. Haubst, S.J. Khoury, J. Cunningham, M. Gotz, and C.A. Walsh. 2004. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J. Comp. Neurol. 479: 168-180.
Nowakowski, R.S, S.B. Lewin, and M.W. Miller. 1989. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J. Neurocytol. 18: 311-318.
Nowakowski, R.S., V.S. Caviness Jr, T. Takahashi, and N.L. Hayes. 2002. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results Probl. Cell Differ. 39: 1-25.
Okamoto, H., Y. Fujioka, A. Takahashi, T. Takahashi, T. Taniguchi, Y. Ishikawa, and M. Yokoyama. 2006. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21WAF1. J. Atheroscler. Thromb. 13: 183-191.
Oki, Y., and H, Sasano. 2004. Localization and physiological roles of urocortin. Peptide. 25: 1745-1749.
O'Leary, D.D. S.J. Chou, and S. Sahara. 2007. Area patterning of the mammalian cortex. Neuron. 56: 252-269.
Pan, W., and A.J. Kastin. 2008. Urocotin and the brain. Prog. Neurobio. 84: 148-156.
Petrella, A., C.W. D'Acunto, M. Rodriquez, M. Festa, A. Tosco, I. Bruno, S. Terracciano, M. Taddei, L.G. Paloma, and L. Parente. 2008. Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: role of annexin A1. Eur. J. Cancer. 44: 740-749.
Pedersen, W.A., R. Wan, P. Zhang, and M.P. Mattson. 2002. Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J. Neurosci. 22: 404-412
Pluchino, S., L. Muzio, J. Imitola, M. Deleidi, C. Alfaro-Cervello, G. Salani, C. Porcheri, E. Brambilla, F. Cavasinni, A. Bergamaschi, J.M. Garcia-Verdugo, G. Comi, S.J. Khoury, and G. Martino. 2008. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain. 131: 2564-2578.
Popken, G.J., R.D. Hodge, P. Ye, J. Zhang, W. Ng, J.R. O’Kusky, and A.J. D’Ercole. 2004. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci. 19: 2056-2068.
Raballo, R., J. Rhee, R. Lyn-Cook, J.F. Leckman, M.L. Schwartz, and F.M. Vaccarino. 2000. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis on the developing cerebral cortex. J. Neurosci. 20: 5012-5023.
Reyes, T.M., K. Lewis, M. H. Perrin, K.S. Kunitake, J. Vaughan, C.A. Arias, J.B. Hogenesch, J. Gulyas, J. Rivier, W.W. Vale, and P.E. Sawchenko. 2001. Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. USA. 98: 2843-2848.
Rocchi, P., P. Tonelli, C. Camerin, S. Purgato, R. Fronza, F. Bianucci, F. Guerra, A. Pession, and A.M. Ferreri. 2005. p21 Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells. Oncol. Rep. 13: 1139-1144.
Ross, R.A., and B.A. Spengler. 2007. Human neuroblastoma stem cells. Semin. Cancer Biol. 17: 241-247
Rowland, B.D., and D. Peeper. 2006. KLF4, p21 and context-dependent opposing forces in cancer. Nat. Rev. Cancer. 6: 11-23.
Roy, K., K. Kuznicki, Q. Wu, Z. Sun, D. Bock, G. Schutz, N. Vranich, and A.P. Monaghan. 2004. The Tlx gene regulate the timing of neurogenesis in the cortex. J. Neurosci. 24: 8333-8345.
Siegenthaler, J.A., and M.W. Miller. 2005. Transforming growth factor ?? promotes cell cycle exit through the cyclin-dependent kinase inhibitor p21 in the developing cerebral cortex. J. Neurosci. 25: 8627-8636.
Siegenthaler, J.A., B. Tremper-Wells, and M.W. Miller. 2008. Foxg1 haploinsufficiency reduces the population of cortical intermediate progenitor cells: effect of increase p21 expression. Cereb. Cortex. 18: 1865-1875.
Scholzen, T., and J. Gerdes. 2000. The Ki-67 protein: from the known and the unknown. J. Cell. Physiol. 182: 311-322.
Seoane, J., H.V. Le, L. Shen, S.A. Anderson, and J. Massagué. 2004. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 117: 211-223.
Sessa, A., C.A. Mao, A.K. Hadjantonakis, W.H. Klein, and V. Broccoli. 2008. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron. 60: 56-69.
Shackney, S.E. 1974. A cytokinetic model for heterogeneous mammalian cell populations. II. Tritiated thymidine studies: the per cent labeled mitosis (PLM) curve. J. Theor. Biol. 44: 49-90.
Shie, J.L., Z.Y. Chen, M. Fu, R.G. Pestell, and C.C. Tseng. 2000. Gut-enriched Krüppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res. 28: 2969-2976.
Slominski, A., and J. Wortsman. 2000. Neuroendocrinology of the skin. Endocr. Rev. 21: 457-487.
Strahl, B.D., and C.D. Allis. 2000. The language of covalent histone modifications. Nature. 403: 41-45.
Sommer, L., and M. Rao. 2002. Neural stem cells and regulation of cell number. Prog. Neurobiol. 66: 1-18.
Stockhausen, M.T., J. Sjölund , C. Manetopoulos, and H. Axelson. 2005. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br. J. Cancer. 92: 751-759.
Suh, J., N, Lu, A. Nicot, I. Tatsuno, and E. DiCicco-Bloom. 2001. PACAP is ananti-mitogenic signal in developing cerebral cortex. Nat. Neurosci. 4: 123-124.
Sun, G., R.T. Yu, R.M. Evans, and Y. Shi. 2007. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc. Natl. Acad. Sci. USA. 104: 15282-15287.
Takahashi, T., R.S. Nowakowski, and V.S. Caviness Jr. 1995. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15: 6046-6057.
Takahashi, T., R.S. Nowakowski, and V.S. Caviness Jr. 1996. Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall. J. Neurosci. 16: 5762-5776.
Takahashi, K., and S, Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126: 663-676.
Taurui, T., T. Takahashi, R.S. Nowakowski, N.L. Hayes, P.G. Bhide and V.S. Caviness Jr. 2005. Overeexpression of p27Kip1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cereb. Cortex. 15: 1343-1355.
Telegdy, G., H. Tiricz, and A. Adamik. 2005. Involvement of neurotransmitters in urocortin-induced passive avoidance learning in mice. Brain Res. Bull. 67: 242-247.
Tezval, M., H. Tezval, K. Dresing, E.K. Stuermer, M. Blaschke. K.M. Stuermer, and H. Siggelkow. 2009. Differentiation dependent expression of urocortin’s mRNA and peptide in human osteoprogenitor cells: influence of BMP-2, TGF-beta-1 and dexamethasone. J Mol. Hist. 40: 331-341.
Theriault, F.M., H.N. Nuthall, Z. Dong, R. Lo, F. Barnabe-Heider, F.D. Miller, and S. Stifani. 2005. Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J. Neurosci. 25: 2050-2061.
Tropepe, V., M. Sibilia, B.G. Ciruna, J. Rossant, E.F. Wagner, and D. van der Kooy. 1999. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208: 166-188.
Tu, H., A.J. Kastin., and W. Pan. 2007a. Corticotropin-releasing hormone receptor (CRHR)1 and CRHR2 are both trafficking and signaling receptors for urocortin. Mol. Endocrinol. 21: 700-711.
Tu, H., A.J. Kastin, C. Bjorbaek, and W. Pan. 2007b. Urocortin trafficking in cerebral microvessel endothelial cells. Mol. Neurosci. 31: 171-181.
Vaccarino, F.M., M.L. Schwartz, R. Raballo, J. Nilsen, J. Rhee, M. Zhou, T. Doetschman, J.D. Coffin, JJ. Wyland, and Y.T.E. Hung. 1999. Change in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat. Neusci. 2: 246-253.
Vaughan, J., C. Donaldson, J. Bittencourt, M.H. Perrin, K. Lewis, S. Sutton, R. Chan, A.V. Turnbull, D. Lovejoy, C. Rivier, J. Rivier, P.E. Sawchenko, and W.W. Vale. 1995. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 378: 287-292
Vescovi, A.L. R. Galli, and B.A. Reynolds. 2006. Brain tumour stem cells. Nat. Rev. Cancer. 6: 425-36.
Vogelauer, M., J. Wu, N. Suka, and M. Grunstein. 2000. Global histone acetylation and deacetylation in yeast. Nature. 408: 495-498.
Wang, M.J., S.Z. Lin, J.S. Kuo, H.Y. Huang, S.F. Tzeng, C.H. Liao, D.C. Chen, and W.F. Chen. 2007. Urocortin modulates inflammatory response andneurotoxicity induced by microglial activation. J. Immunol. 179: 6204-6214.
Wang, J., Y. Xu, Y. Xu, H. Zhu, R. Zhang, G. Zhang, and S. Li. 2008. Urocortin's inhibition of tumor growth and angiogenesis in hepatocellular carcinoma via corticotrophin-releasing factor receptor 2. Cancer Invest. 26: 359-68.
Weise, B., T. Janet, and C. Grothe. 1993. Localization of bFGF and FGF-receptor in the developing nervous system of the embryonic and newborn rat. J. Neurosci. Res. 34: 442-453.
Witt, O., H.E. Deubzer, M. Lodrini, T. Milde, and I. Oehme. 2009. Targeting histone deacetylases in neuroblastoma. Curr. Pharm. Des. 15: 436-447.
Wu, S.X., S. Goebbels, K. Nakamura, K. Nakamura, K. Kometani, N. Minato, T. Kaneko, K.A. Nave, and N. Tamamaki. 2005. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl. Acad. Sci. USA. 102: 17172-17177.
Xu, Q., C.P. Wonders, and S.A. Anderson. 2005. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telecephalon. Development. 132: 4987-4998.
Yamamoto, H., T. Maeda., M. Fujimara, and M. Fujimiya. 1998. Urocortin-like immunoreactivity in the substantia nigra, ventral tegmental area and Edinger-Westphal nucleus of the rat. Neurosci. Lett. 243: 21-24.
Ying, M., S. Wang, Y. Sang, P. Sun, B. Lal, C.R. Goodwin, H. Guerrero-Cazares, A. Quinones-Hinojosa, J. Laterra, and S. Xia. 2011. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene. doi:10.1038/onc.2011.58.
Yoshikawa, K. 2000. Cell cycle regulators in neural stem cells and postmitotic neurons. Neurosci. Res. 37: 1-14.
Zarkowska, T., and S. Mittnacht. 1997. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J. Biol. Chem. 272: 12738-12746.
Zbytek, B., M. Pikula, R.M. Slominski, A. Mysliwski, E. Wei, J. Wortsman, and A.T. Slominski. 2005. Corticotropin releasing hormone triggers differentiation in HaCaT keratinocytes. Br. J. Dermatol. 152: 474-80.
Zetterberg, A., O. Larsson, and K.G. Wiman. 1995. What is the restriction point? Curr. Opin. Cell Biol. 7: 835-842.
Zhang, W., D.E. Geiman, J.M. Shields, D.T. Dang, C.S. Mahatan, K.H. Kaestner, J.R. Biggs, A.S. Kraft, and V.W. Yang. 2000. The gut-enriched Krüppel-like factor (Krüppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J. Biol. Chem. 275: 18391-18398.
Zupkovitz, G., R. Grausenburger, R. Brunmeir, S. Senese, J. Tischler, J. Jurkin, M. Rembold, D. Meunier, G. Egger, S. Lagger, S. Chiocca, F. Propst, G. Weitzer, and C. Seiser. 2010. The cyclin-dependent kinase inhibitor p21 is a crucial target for histone deacetylase 1 as a regulator of cellular proliferation. Mol. Cell. Biol. 30: 1171-1181.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊