|
[1] International Agency for Research on Cancer (IARC) Monographs, Carbon tetrachloride, 71 (1999) 401-432. [2] D. Fan, G. O'Brien Johnson, P.G. Tratnyek, R.L. Johnson, Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR), Environmental Science & Technology, 50 (2016) 9558-9565. [3] J.E. Amonette, D.J. Workman, D.W. Kennedy, J.S. Fruchter, Y.A. Gorby, Dechlorination of carbon tetrachloride by Fe(II) associated with goethite, Environmental Science & Technology, 34 (2000) 4606-4613. [4] V.A. Nzengung, R.M. Castillo, W.P. Gates, G.L. Mills, Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals, Environmental Science & Technology, 35 (2001) 2244-2251. [5] S. Khokhar, R.K. Owusu Apenten, Iron binding characteristics of phenolic compounds: some tentative structure–activity relations, Food Chemistry, 81 (2003) 133-140. [6] C.H. Chang, C.L. Hsieh, H.E. Wang, C.C. Peng, C.C. Chyau, R.Y. Peng, Unique bioactive polyphenolic profile of guava (Psidium guajava) budding leaf tea is related to plant biochemistry of budding leaves in early dawn, Journal of the Science of Food and Agriculture, 93 (2013) 944-954. [7] M. Simmonds, V.R. Preedy, Nutritional composition of fruit cultivars, Academic Press, San Diego, (2016). [8] R.Y. Peng, C.L. Hsien, K.C. Chen, Recent progress in medicinal plants, phytopharmacology and therapeutic values II, Studium Press, Houston, (2007). [9] R.A. Maithreepala, R.A. Doong, Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions, Chemosphere, 70 (2008) 1405-1413. [10] H.F. Stroo, C.H. Ward, In situ remediation of chlorinated solvent plumes, Springer-Verlag, New York, (2010). [11] 行政院環保署, 物質安全資料表, 行政院環保署, (2013). [12] T.M. Vogel, C.S. Criddle, P.L. McCarty, ES Critical Reviews: transformations of halogenated aliphatic compounds, Environmental Science & Technology, 21 (1987) 722-736. [13] J. Dolfing, M. Van Eekert, A. Seech, J. Vogan, J. Mueller, In situ chemical reduction (ISCR) technologies: significance of low Eh reactions, Soil & Sediment Contamination, 17 (2008) 63-74. [14] Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profile for carbon tetrachloride, U.S. Department of Health and Human Services, Public Health Service, Atlanta, (2005). [15] 行政院勞工委員會, 勞工作業場所容許暴露標準, 附表一, (2014). [16] 行政院環保署, 土壤及地下水污染整治法, 行政院環保署, (2017). [17] 行政院環保署, 環保法規, 行政院環保署, (2013). [18] Alternatives for ground water cleanup, National Academy of Sciences, Washington, DC, USA, (1994). [19] B. Li, K. Lin, W. Zhang, S. Lu, Y. Liu, Effectiveness of air stripping, advanced oxidation, and activated carbon adsorption-coupled process intreating chlorinated solvent–contaminated groundwater, Journal of Environmental Engineering, 138 (2012) 903-914. [20] J.-S. Yang, K. Baek, T.-S. Kwon, J.-W. Yang, Adsorption of chlorinated solvents in nonionic surfactant solutions with activated carbon in a fixed bed, Journal of Industrial and Engineering Chemistry, 15 (2009) 777-779. [21] A. Grostern, E.A. Edwards, A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes, Applied and Environmental Microbiology, 72 (2006) 7849-7856. [22] C.C. Chan, S.O. Mundle, T. Eckert, X. Liang, S. Tang, G. Lacrampe-Couloume, E.A. Edwards, B.S. Lollar, Large carbon isotope fractionation during biodegradation of chloroform by dehalobacter cultures, Environmental Science & Technology, 46 (2012) 10154-10160. [23] R.J. Watts, Hazardous Wastes: sources, pathways, receptors, Wiley, New York, (1998). [24] V.R. Vermeul, M.D. Williams, J.J. Evans, J.E. Szecsody, B.N. Biornstad, T.L. Liikala, In situ redox manipulation proof-of-principle test at the fort lewis logistics center Pacific Northwest National Laboratory, Richland, WA, USA, (2000). [25] X. Ma, D. He, A.M. Jones, R.N. Collins, T.D. Waite, Reductive reactivity of borohydride-and dithionite-synthesized iron-based nanoparticles: a comparative study, Journal of Hazardous Materials, 303 (2016) 101-110. [26] USEPA nanotechnology white paper, EPA 100/B-07/001 February 2007 www.epa.gov/osa [accessed June 10, 2009] [27] P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup, Nano Today, 1 (2006) 2. [28] L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal, Environmental Science & Technology, 28 (1994) 2045-2053. [29] W.A. Arnold, A.L. Roberts, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environmental Science & Technology, 34 (2000) 1794-1805. [30] X.-Q. Li, J. Cao, W.-X. Zhang, Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS), Industrial & Engineering Chemistry Research, 47 (2008) 2131-2139. [31] S. Ko, B. Batchelor, Identification of active agents for tetrachloroethylene degradation in portland cement slurry containing ferrous iron, Environmental Science & Technology, 41 (2007) 5824-5832. [32] H.K. Lee, S.H. Do, B. Batchelor, Y.H. Jo, S.H. Kong, PCE DNAPL degradation using ferrous iron solid mixture (ISM), Chemosphere, 76 (2009) 1082-1087. [33] G.W. Luther, In aquatic chemical kinetics, Wiley, New York, (1990). [34] E. Ahlberg, K.S.E. Forssberg, X. Wang, The surface oxidation of pyrite in alkaline solution, Journal of Applied Electrochemistry, 20 (1990) 1033-1039. [35] R. Weerasooriya, B. Dharmasena, Pyrite-assisted degradation of trichloroethene (TCE), Chemosphere, 42 (2001) 389-396. [36] H.T. Pham, M. Kitsuneduka, J. Hara, K. Suto, C. Inoue, Trichloroethylene transformation by natural mineral pyrite: the deciding role of oxygen, Environmental Science & Technology, 42 (2008) 7470-7475. [37] K.M. Danielsen, K.F. Hayes, pH Dependence of carbon tetrachloride reductive dechlorination by magnetite, Environmental Science & Technology, 38 (2004) 4745-4752. [38] P.A. Ghorpade, J.H. Kim, W.H. Choi, J.Y. Park, New and effective multi-element alpha-hematite systems for reduction of trichloroethylene, Environmental Technology, 35 (2014) 27-35. [39] W.H. Bowen, Nature of plaque, Oral Science Reviews, 9 (1976) 3-21. [40] P. Fresco, F. Borges, C. Diniz, M.P. Marques, New insights on the anticancer properties of dietary polyphenols, Medicinal Research Reviews, 26 (2006) 747-766. [41] M.G.L. Hertog, E.J.M. Feskens, D. Kromhout, M.G.L. Hertog, P.C.H. Hollman, M.G.L. Hertog, M.B. Katan, Dietary antioxidant flavonoids and risk of coronary heart disease: the zutphen elderly study, The Lancet, 342 (1993) 1007-1011. [42] Y. Hanasaki, S. Ogawa, S. Fukui, The correlation between active oxygens scavenging and antioxidative effects of flavonoids., Free Radical Biology & Medicine, 16 (1994) 845-850. [43] M. Erben-Russ, C. Michel, W. Bors, M. Saran, Absolute rate constants of alkoxyl radical reactions in aqueous solution, The Journal of Physical Chemistry, 91 (1987) 2362-2365. [44] H.-Y. Chen, G.-C. Yen, Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves, Food Chemistry, 101 (2007) 686-694. [45] E.S. Gil, R.O. Couto, Flavonoid electrochemistry: a review on the electroanalytical applications, Revista Brasileira de Farmacognosia, 23 (2013) 542-558. [46] M. Muzolf, H. Szymusiak, A. Gliszczynska-Swiglo, I.M. Rietjens, B. Tyrakowska, pH-Dependent radical scavenging capacity of green tea catechins, Journal of Agricultural and Food Chemistry, 56 (2008) 816-823. [47] J.L. Beltrán, N. Sanli, G. Fonrodona, D. Barrón, G. Özkan, J. Barbosa, Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media, Analytica Chimica Acta, 484 (2003) 253-264. [48] P.-G. Pietta, Flavonoids as antioxidants, Journal of Natural Products, 63 (2000) 1035-1042. [49] M. Muzolf-Panek, A. Gliszczyńska-Świgło, H. Szymusiak, B. Tyrakowska, The influence of stereochemistry on the antioxidant properties of catechin epimers, European Food Research and Technology, 235 (2012) 1001-1009. [50] R. Pulido, L. Bravo, F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay, Journal of Agricultural and Food Chemistry, 48 (2000) 3396-3402. [51] U.K. Parashar, V. Kumar, T. Bera, P.S. Saxena, G. Nath, S.K. Srivastava, R. Giri, A. Srivastava, Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles, Nanotechnology, 22 (2011) 415104. [52] K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease, Toxicology, 283 (2011) 65-87. [53] H. Liu, J. Cao, W. Jiang, Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars, LWT - Food Science and Technology, 63 (2015) 1042-1048. [54] Z. Wang, Iron complex nanoparticles synthesized by eucalyptus leaves, ACS Sustainable Chemistry & Engineering, 1 (2013) 1551-1554. [55] S. Tachakittirungrod, S. Okonogi, S. Chowwanapoonpohn, Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leaf extract, Food Chemistry, 103 (2007) 381-388. [56] M.C. Nicoli, M. Anese, M. Parpinel, Influence of processing on the antioxidant properties of fruit and vegetables, Trends in Food Science & Technology, 10 (1999) 94-100. [57] W. Nantitanon, S. Yotsawimonwat, S. Okonogi, Factors influencing antioxidant activities and total phenolic content of guava leaf extract, LWT - Food Science and Technology, 43 (2010) 1095-1103. [58] E. Capecka, A. Marcezeek, M. Leja, Antioxidant activity of fresh and dry herbs of some Lamiciae species, Food Chemistry, 93 (2005) 223-226. [59] C.-W. Liu, Y.-C. Wang, H.-C. Lu, W.-D. Chiang, Optimization of ultrasound-assisted extraction conditions for total phenols with anti-hyperglycemic activity from Psidium guajava leaves, Process Biochemistry, 49 (2014) 1601-1605. [60] D.-H. You, J.-W. Park, H.-G. Yuk, S.-C. Lee, Antioxidant and tyrosinase inhibitory activities of different parts of guava (Psidium guajava L.), Food Science and Biotechnology, 20 (2011) 1095-1100. [61] T. Settheeworrarit, S.K. Hartwell, S. Lapanatnoppakhun, J. Jakmunee, G.D. Christian, K. Grudpan, Exploiting guava leaf extract as an alternative natural reagent for flow injection determination of iron, Talanta, 68 (2005) 262-267. [62] D. Bose, S. Chatterjee, Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa, Applied Nanoscience, 6 (2015) 895-901. [63] E. Díaz-de-Cerio, A.M. Gómez-Caravaca, V. Verardo, A. Fernández-Gutiérrez, A. Segura-Carretero, Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS, Journal of Functional Foods, 22 (2016) 376-388. [64] J.C. Nunes, M.G. Lago, V.N. Castelo-Branco, F.R. Oliveira, A.G. Torres, D. Perrone, M. Monteiro, Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders, Food Chemistry, 197, Part A (2016) 881-890. [65] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine, 26 (1999) 1231-1237. [66] S. Okonogi, C. Duangrat, S. Anuchpreeda, S. Tachakittirungrod, S. Chowwanapoonpohn, Comparison of antioxidant capacities and cytotoxicities of certain fruit peels, Food Chemistry, 103 (2007) 839-846. [67] T.C.P. Dinis, V.M.C. Madeira, L.M. Almeida, Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers, Archives of Biochemistry and Biophysics, 315 (1994) 161-169. [68] S.H. Kim, S.K. Cho, S.H. Hyun, H.E. Park, Y.S. Kim, H.K. Choi, Metabolic profiling and predicting the free radical scavenging activity of guava (Psidium guajava L.) leaves according to harvest time by 1H-nuclear magnetic resonance spectroscopy, Bioscience, Biotechnology, and Biochemistry, 75 (2011) 1090-1097. [69] Y.-T. Lin, C. Liang, Carbon tetrachloride degradation by alkaline ascorbic acid solution, Environmental Science & Technology, 47 (2013) 3299-3307. [70] C.A. Rice-Evans, N.J. Miller, G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radical Biology and Medicine, 20 (1996) 933-956. [71] M.L. TÁmara, E.C. Butler, Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal, Environmental Science & Technology, 38 (2004) 1866-1876. [72] C. Liang, Z.-S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66 (2007) 106-113.
|