跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周玄盈
研究生(外文):Hsuan-Ying Chou
論文名稱:芭樂葉萃取物還原降解四氯化碳
論文名稱(外文):Reductive degradation of carbon tetrachloride with guava leaf extract
指導教授:梁振儒梁振儒引用關係
口試委員:林財富鄭文伯陳佳吟
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:芭樂還原劑氯化有機溶劑鐵礦現地化學還原法活化能
外文關鍵詞:GuavaReductantChlorinated solventIron mineralIn Situ Chemical Reduction (ISCR)Activation energy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:2
Chlorinated aliphatic hydrocarbons are common contaminants found in soil and groundwater. Carbon tetrachloride (CT), which has the highest carbon oxidation state, is prone to accept electrons and be dechlorinated. Polyphenols containing OH groups are rich in fruits (e.g., guava). Deprotonations of polyphenols when pH is greater than dissociation constant (pKa) of OH function group would cause electrons release. Therefore, polyphenols are regarded as natural antioxidants. This study attempted to extract polyphenols from guava leaves. Guava leaf extract (GLE) was prepared as solid powder and liquid filtrate forms, named GLE-Powder and GLE-Filtrate, respectively. Reductive degradation of CT with GLE was investigated and influences of parameters such as pH, temperature, the presence of soils, different iron minerals (FeS2, Fe2O3, Fe3O4 and FeOOH), Fe(II) and Fe(III) were assessed. Byproducts and pathways of CT degradation were also discussed. For characterization of GLE, total phenolic content, antioxidant activity, reducing power and ferrous ion-chelating ability were analyzed. It was found that complete CT (50 mg/L) degradation with GLE (8000 mg/L) for 7d at pH ≥ 10 was achieved. When comparing the effectiveness of between GLE-Powder and GLE-Filtrate, there was nearly no difference (<10% variation). Therefore, subsequent experiments were conducted using GLE-Filtrate at pH 10. The rate of CT degradation with GLE was enhanced in the presence of Fe(II), iron minerals and soils. The results of reaction kinetics between CT and GLE well fitted to the pseudo first-order reaction kinetic model with a rate constant (k1) of 0.284 d-1 and the presence of Fe(II), iron minerals and soils resulted in k1 ranging from 0.386 to 55.44 d-1. Additionally, the specific reaction rate constant (kSA) based on surface area of the iron mineral particles ranged from 1.90 × 10-4 to 4.81 × 10-3 L d-1 m-2. The mechanism of CT degradation mainly followed reductive dechlorination pathway. The results of CT degradation and byproducts formation and the mass balance conducted based on chloride ion exhibited that CT was transformed to chloroform, dichloromethane and chloromethane. Also, activation energy for reaction between GEL-Filtrate and CT was determined to be 66.3 kJ/mole; the presence of Fe2O3 reduced activation energy to 49.8 kJ/mole. These experimental results revealed that CT degradation with GLE exhibited the potential for remediation of chlorinated solvents in soil and groundwater system.
中文摘要 i
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 含氯有機物之污染與整治技術 4
2.1.1 四氯化碳特性與污染現況 6
2.1.2 含氯有機物之整治技術 8
2.2 現地化學還原整治技術 10
2.3 多酚類物質介紹 17
2.4 芭樂葉之成分與特性介紹 24
第三章 材料與方法 28
3.1 實驗藥品與材料 28
3.2 實驗流程 32
3.2.1 芭樂葉萃取物製做 33
3.2.2 芭樂葉萃取物還原降解四氯化碳試驗 34
3.2.2.1 不同pH之影響 34
3.2.2.2 不同芭樂葉萃取物濃度之影響 35
3.2.2.3 鐵礦/土壤存在下還原降解四氯化碳反應動力試驗 36
3.2.2.4 不同環境溫度之影響 37
3.3實驗分析方法 38
第四章 結果與討論 45
4.1 芭樂葉萃取物組成成分與特性分析 45
4.2 芭樂葉萃取物還原降解四氯化碳試驗 54
4.2.1 不同pH之影響 54
4.2.2 不同芭樂葉萃取物濃度之影響 57
4.2.3 鐵鹽/鐵礦/土壤存在下還原降解四氯化碳反應動力試驗 59
4.2.4 不同反應環境溫度之影響 75
第五章 結論與建議 78
5.1 結論 78
5.2 建議 81
參考文獻 82
[1] International Agency for Research on Cancer (IARC) Monographs, Carbon tetrachloride, 71 (1999) 401-432.
[2] D. Fan, G. O'Brien Johnson, P.G. Tratnyek, R.L. Johnson, Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR), Environmental Science & Technology, 50 (2016) 9558-9565.
[3] J.E. Amonette, D.J. Workman, D.W. Kennedy, J.S. Fruchter, Y.A. Gorby, Dechlorination of carbon tetrachloride by Fe(II) associated with goethite, Environmental Science & Technology, 34 (2000) 4606-4613.
[4] V.A. Nzengung, R.M. Castillo, W.P. Gates, G.L. Mills, Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals, Environmental Science & Technology, 35 (2001) 2244-2251.
[5] S. Khokhar, R.K. Owusu Apenten, Iron binding characteristics of phenolic compounds: some tentative structure–activity relations, Food Chemistry, 81 (2003) 133-140.
[6] C.H. Chang, C.L. Hsieh, H.E. Wang, C.C. Peng, C.C. Chyau, R.Y. Peng, Unique bioactive polyphenolic profile of guava (Psidium guajava) budding leaf tea is related to plant biochemistry of budding leaves in early dawn, Journal of the Science of Food and Agriculture, 93 (2013) 944-954.
[7] M. Simmonds, V.R. Preedy, Nutritional composition of fruit cultivars, Academic Press, San Diego, (2016).
[8] R.Y. Peng, C.L. Hsien, K.C. Chen, Recent progress in medicinal plants, phytopharmacology and therapeutic values II, Studium Press, Houston, (2007).
[9] R.A. Maithreepala, R.A. Doong, Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions, Chemosphere, 70 (2008) 1405-1413.
[10] H.F. Stroo, C.H. Ward, In situ remediation of chlorinated solvent plumes, Springer-Verlag, New York, (2010).
[11] 行政院環保署, 物質安全資料表, 行政院環保署, (2013).
[12] T.M. Vogel, C.S. Criddle, P.L. McCarty, ES Critical Reviews: transformations of halogenated aliphatic compounds, Environmental Science & Technology, 21 (1987) 722-736.
[13] J. Dolfing, M. Van Eekert, A. Seech, J. Vogan, J. Mueller, In situ chemical reduction (ISCR) technologies: significance of low Eh reactions, Soil & Sediment Contamination, 17 (2008) 63-74.
[14] Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profile for carbon tetrachloride, U.S. Department of Health and Human Services, Public Health Service, Atlanta, (2005).
[15] 行政院勞工委員會, 勞工作業場所容許暴露標準, 附表一, (2014).
[16] 行政院環保署, 土壤及地下水污染整治法, 行政院環保署, (2017).
[17] 行政院環保署, 環保法規, 行政院環保署, (2013).
[18] Alternatives for ground water cleanup, National Academy of Sciences, Washington, DC, USA, (1994).
[19] B. Li, K. Lin, W. Zhang, S. Lu, Y. Liu, Effectiveness of air stripping, advanced oxidation, and activated carbon adsorption-coupled process intreating chlorinated solvent–contaminated groundwater, Journal of Environmental Engineering, 138 (2012) 903-914.
[20] J.-S. Yang, K. Baek, T.-S. Kwon, J.-W. Yang, Adsorption of chlorinated solvents in nonionic surfactant solutions with activated carbon in a fixed bed, Journal of Industrial and Engineering Chemistry, 15 (2009) 777-779.
[21] A. Grostern, E.A. Edwards, A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes, Applied and Environmental Microbiology, 72 (2006) 7849-7856.
[22] C.C. Chan, S.O. Mundle, T. Eckert, X. Liang, S. Tang, G. Lacrampe-Couloume, E.A. Edwards, B.S. Lollar, Large carbon isotope fractionation during biodegradation of chloroform by dehalobacter cultures, Environmental Science & Technology, 46 (2012) 10154-10160.
[23] R.J. Watts, Hazardous Wastes: sources, pathways, receptors, Wiley, New York, (1998).
[24] V.R. Vermeul, M.D. Williams, J.J. Evans, J.E. Szecsody, B.N. Biornstad, T.L. Liikala, In situ redox manipulation proof-of-principle test at the fort lewis logistics center Pacific Northwest National Laboratory, Richland, WA, USA, (2000).
[25] X. Ma, D. He, A.M. Jones, R.N. Collins, T.D. Waite, Reductive reactivity of borohydride-and dithionite-synthesized iron-based nanoparticles: a comparative study, Journal of Hazardous Materials, 303 (2016) 101-110.
[26] USEPA nanotechnology white paper, EPA 100/B-07/001 February 2007 www.epa.gov/osa [accessed June 10, 2009]
[27] P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup, Nano Today, 1 (2006) 2.
[28] L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal, Environmental Science & Technology, 28 (1994) 2045-2053.
[29] W.A. Arnold, A.L. Roberts, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environmental Science & Technology, 34 (2000) 1794-1805.
[30] X.-Q. Li, J. Cao, W.-X. Zhang, Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS), Industrial & Engineering Chemistry Research, 47 (2008) 2131-2139.
[31] S. Ko, B. Batchelor, Identification of active agents for tetrachloroethylene degradation in portland cement slurry containing ferrous iron, Environmental Science & Technology, 41 (2007) 5824-5832.
[32] H.K. Lee, S.H. Do, B. Batchelor, Y.H. Jo, S.H. Kong, PCE DNAPL degradation using ferrous iron solid mixture (ISM), Chemosphere, 76 (2009) 1082-1087.
[33] G.W. Luther, In aquatic chemical kinetics, Wiley, New York, (1990).
[34] E. Ahlberg, K.S.E. Forssberg, X. Wang, The surface oxidation of pyrite in alkaline solution, Journal of Applied Electrochemistry, 20 (1990) 1033-1039.
[35] R. Weerasooriya, B. Dharmasena, Pyrite-assisted degradation of trichloroethene (TCE), Chemosphere, 42 (2001) 389-396.
[36] H.T. Pham, M. Kitsuneduka, J. Hara, K. Suto, C. Inoue, Trichloroethylene transformation by natural mineral pyrite: the deciding role of oxygen, Environmental Science & Technology, 42 (2008) 7470-7475.
[37] K.M. Danielsen, K.F. Hayes, pH Dependence of carbon tetrachloride reductive dechlorination by magnetite, Environmental Science & Technology, 38 (2004) 4745-4752.
[38] P.A. Ghorpade, J.H. Kim, W.H. Choi, J.Y. Park, New and effective multi-element alpha-hematite systems for reduction of trichloroethylene, Environmental Technology, 35 (2014) 27-35.
[39] W.H. Bowen, Nature of plaque, Oral Science Reviews, 9 (1976) 3-21.
[40] P. Fresco, F. Borges, C. Diniz, M.P. Marques, New insights on the anticancer properties of dietary polyphenols, Medicinal Research Reviews, 26 (2006) 747-766.
[41] M.G.L. Hertog, E.J.M. Feskens, D. Kromhout, M.G.L. Hertog, P.C.H. Hollman, M.G.L. Hertog, M.B. Katan, Dietary antioxidant flavonoids and risk of coronary heart disease: the zutphen elderly study, The Lancet, 342 (1993) 1007-1011.
[42] Y. Hanasaki, S. Ogawa, S. Fukui, The correlation between active oxygens scavenging and antioxidative effects of flavonoids., Free Radical Biology & Medicine, 16 (1994) 845-850.
[43] M. Erben-Russ, C. Michel, W. Bors, M. Saran, Absolute rate constants of alkoxyl radical reactions in aqueous solution, The Journal of Physical Chemistry, 91 (1987) 2362-2365.
[44] H.-Y. Chen, G.-C. Yen, Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves, Food Chemistry, 101 (2007) 686-694.
[45] E.S. Gil, R.O. Couto, Flavonoid electrochemistry: a review on the electroanalytical applications, Revista Brasileira de Farmacognosia, 23 (2013) 542-558.
[46] M. Muzolf, H. Szymusiak, A. Gliszczynska-Swiglo, I.M. Rietjens, B. Tyrakowska, pH-Dependent radical scavenging capacity of green tea catechins, Journal of Agricultural and Food Chemistry, 56 (2008) 816-823.
[47] J.L. Beltrán, N. Sanli, G. Fonrodona, D. Barrón, G. Özkan, J. Barbosa, Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media, Analytica Chimica Acta, 484 (2003) 253-264.
[48] P.-G. Pietta, Flavonoids as antioxidants, Journal of Natural Products, 63 (2000) 1035-1042.
[49] M. Muzolf-Panek, A. Gliszczyńska-Świgło, H. Szymusiak, B. Tyrakowska, The influence of stereochemistry on the antioxidant properties of catechin epimers, European Food Research and Technology, 235 (2012) 1001-1009.
[50] R. Pulido, L. Bravo, F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay, Journal of Agricultural and Food Chemistry, 48 (2000) 3396-3402.
[51] U.K. Parashar, V. Kumar, T. Bera, P.S. Saxena, G. Nath, S.K. Srivastava, R. Giri, A. Srivastava, Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles, Nanotechnology, 22 (2011) 415104.
[52] K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease, Toxicology, 283 (2011) 65-87.
[53] H. Liu, J. Cao, W. Jiang, Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars, LWT - Food Science and Technology, 63 (2015) 1042-1048.
[54] Z. Wang, Iron complex nanoparticles synthesized by eucalyptus leaves, ACS Sustainable Chemistry & Engineering, 1 (2013) 1551-1554.
[55] S. Tachakittirungrod, S. Okonogi, S. Chowwanapoonpohn, Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leaf extract, Food Chemistry, 103 (2007) 381-388.
[56] M.C. Nicoli, M. Anese, M. Parpinel, Influence of processing on the antioxidant properties of fruit and vegetables, Trends in Food Science & Technology, 10 (1999) 94-100.
[57] W. Nantitanon, S. Yotsawimonwat, S. Okonogi, Factors influencing antioxidant activities and total phenolic content of guava leaf extract, LWT - Food Science and Technology, 43 (2010) 1095-1103.
[58] E. Capecka, A. Marcezeek, M. Leja, Antioxidant activity of fresh and dry herbs of some Lamiciae species, Food Chemistry, 93 (2005) 223-226.
[59] C.-W. Liu, Y.-C. Wang, H.-C. Lu, W.-D. Chiang, Optimization of ultrasound-assisted extraction conditions for total phenols with anti-hyperglycemic activity from Psidium guajava leaves, Process Biochemistry, 49 (2014) 1601-1605.
[60] D.-H. You, J.-W. Park, H.-G. Yuk, S.-C. Lee, Antioxidant and tyrosinase inhibitory activities of different parts of guava (Psidium guajava L.), Food Science and Biotechnology, 20 (2011) 1095-1100.
[61] T. Settheeworrarit, S.K. Hartwell, S. Lapanatnoppakhun, J. Jakmunee, G.D. Christian, K. Grudpan, Exploiting guava leaf extract as an alternative natural reagent for flow injection determination of iron, Talanta, 68 (2005) 262-267.
[62] D. Bose, S. Chatterjee, Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa, Applied Nanoscience, 6 (2015) 895-901.
[63] E. Díaz-de-Cerio, A.M. Gómez-Caravaca, V. Verardo, A. Fernández-Gutiérrez, A. Segura-Carretero, Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS, Journal of Functional Foods, 22 (2016) 376-388.
[64] J.C. Nunes, M.G. Lago, V.N. Castelo-Branco, F.R. Oliveira, A.G. Torres, D. Perrone, M. Monteiro, Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders, Food Chemistry, 197, Part A (2016) 881-890.
[65] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine, 26 (1999) 1231-1237.
[66] S. Okonogi, C. Duangrat, S. Anuchpreeda, S. Tachakittirungrod, S. Chowwanapoonpohn, Comparison of antioxidant capacities and cytotoxicities of certain fruit peels, Food Chemistry, 103 (2007) 839-846.
[67] T.C.P. Dinis, V.M.C. Madeira, L.M. Almeida, Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers, Archives of Biochemistry and Biophysics, 315 (1994) 161-169.
[68] S.H. Kim, S.K. Cho, S.H. Hyun, H.E. Park, Y.S. Kim, H.K. Choi, Metabolic profiling and predicting the free radical scavenging activity of guava (Psidium guajava L.) leaves according to harvest time by 1H-nuclear magnetic resonance spectroscopy, Bioscience, Biotechnology, and Biochemistry, 75 (2011) 1090-1097.
[69] Y.-T. Lin, C. Liang, Carbon tetrachloride degradation by alkaline ascorbic acid solution, Environmental Science & Technology, 47 (2013) 3299-3307.
[70] C.A. Rice-Evans, N.J. Miller, G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radical Biology and Medicine, 20 (1996) 933-956.
[71] M.L. TÁmara, E.C. Butler, Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal, Environmental Science & Technology, 38 (2004) 1866-1876.
[72] C. Liang, Z.-S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66 (2007) 106-113.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top