跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 07:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:錢文賢
研究生(外文):Wen-Hsien Chien
論文名稱:可調式VLSI架構於H.264移動估測電路之設計與實現
論文名稱(外文):Design and Implementation Scalable of VLSI Architecture for Variable Block Size Motion Estimation
指導教授:歐謙敏歐謙敏引用關係
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:45
中文關鍵詞:可調式H.264視訊壓縮標準區塊比對可變區塊移動估測
外文關鍵詞:ScalableH.264 Video Coding StandardBlock MatchingVariable Block Size Motion Estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
H.264 視訊壓縮標準在移動估測部分採用可變區塊比對演算法,這需要付出大量的計算時間與資料處理,佔用視訊壓縮大部分的時間。然而在移動估測中,區塊比對演算法有相當高的資料相關性以及規則性,很適合用於大量平行處理的硬體電路來完成。在過去多年來的文獻中,文獻[23]提出的硬體架構可以有效處理所有不同大小的區塊,並有較低的計算延遲和高度的計算吞吐量。本論文以此VLSI架構為基礎,設計可調式VLSI架構於H.264移動估測電路,將處理候選區塊的處理單元模組化,讓使用者在追求高效能與低成本的考量下,選擇合適數量的處理單元,大幅提升延展性。另一方面,本論文提出在局部記憶體只使用四個暫存器進行移動估測,改善硬體架構在局部記憶體使用較多暫存器的缺點。
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與研究動機 1
1.2 全文架構 3
第二章 基本原理介紹 4
2.1 H.264視訊壓縮標準 4
2.2 移動估測與移動補償 5
2.3 區塊比對演算法 7
2.3.1 全域搜尋區塊比對演算法 8
2.4 絕對誤差總和 9
2.5 H.264可變區塊比對演算法 10
2.6 心脈陣列架構 11
2.6.1 心脈陣列處理器 11
2.6.2 一維心脈陣列 12
2.6.3 串接一維心脈陣列 14
第三章 可調式VLSI架構於H.264移動估測電路 17
3.1 移動估測單元 17
3.2 處理單元(Processor Unit, PU)設計 18
3.2.1 H.264可變區塊比對演算法分析 19
3.2.2 絕對誤差總和模組 21
3.2.3 可變區塊移動估測處理器 27
3.3 移動向量選擇模組 27
3.4 控制單元設計 28
第四章 實驗結果與效能分析 29
4.1 實驗環境與步驟 29
4.2 實驗結果 35
4.3 效能分析 39
第五章 結論與未來展望 42
參考文獻 43
1.陳景智,「實現H.264可變區塊移動估測單元之積體電路設計」,清雲科技大學,碩士論文,民國九十六年。
2.“Coding of audio-visual objects-Part 2: Visual,” in ISO/IEC 14496-2(MPEG-4 Visual Version 1), 1999.
3.“Coding of Moving Pictures and Associated Audio for Digital storage Media at up to About 1.5 Mbits/s,” ISO/IEC 1117-2: Video(MPEG-1), 1991.
4.“Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC144496-10 AVC),” Joint Video Team of ISO/IEC and ITU-T, March 2003.
5.“Generic Coding of Moving Pictures and Associated Audio Information,” ISO/IEC 13818-2: Video (MPEG-2), 1996.
6.“Video Codec for Audio Visual Services at px64 kbits/s,” ITU-T Recommendation H.261, 1990.
7.“Video Coding for Low Bit Rate Communication, Version 1,” ITU-T Recommendation H.263, 1995.
8.M. J. Chen, L. G. Chen and T. D. Chiueh, “One-Dimensional Full Search Motion Estimation Algorithm for Video Coding,” IEEE Trans. Circuits and Systems for Video Technology, 4, pp. 504-509, 1994.
9.L. De Vos and M. Schobinger, “VLSI architecture for a flexible block matching processor,” IEEE Trans. Circuits and Systems for Video Technology, 5, pp. 417-428, 1995.
10.Z. He, M. L. Liou, C. H. Chan, and R. Li, “An Efficient VLSI Architecture for New Three-step Search Algorithm,” Proceeding of the 38th IEEE Midwest symposium on Circuits and Systems, 2, pp. 1228-1231, 1996.
11.Z. He and M. Bystrom, “Improved conversion from DCT blocks to integer cosine transform blocks in H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, 18, pp. 851-857, 2008.
12.M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, “H.264/AVC Baseline Profile Decoder Complexity Analysis,” IEEE Trans. On Circuits and Systems for Video Technology, 13, pp. 704-716, 2003.
13.W. J. Hwang, C. M. Ou, W. M. Lu, and C. F. Lin, “VLSI Architecture for Motion Vector Quantization,” IEEE Trans. Consumer Electronics, 49, pp. 237-242, 2003.
14.W. J. Hwang, Y. C. Lu and Y. C. Zeng, “Fast block-matching algorithm for video coding,” Electronics Letters, 33, pp. 833-835, 1997.
15.V. Iverson, J. McVeigh and B. Reese, “Real-time H.24-AVC codec on Intel architectures”, IEEE Image Processing, 2, pp. 757-760, 2004.
16.M. Jong, L. G. Chen and T. D. Chiueh, “Accuracy Improvement and Cost Reduction of 3-Step Search Block Matching Algorithm for Video Coding,” IEEE Trans. Circuits and Systems for Video Technology, 4, pp. 88-90, 1994.
17.T. Komarek and P. Pirsch, “Array Architectures for Block Matching Algorithms,” IEEE Trans. Circuits and Systems, 36, pp. 1301-1308, 1989.
18.J. Lee and B. Jeon, “Fast mode decision for H.264 with variable motion block sizes,” in Proc. Int. Symp. Computer and Information Sciences (ISCIS) 2003, pp. 723-730, Nov. 2003.
19.Y. Y. Lee and John W. Woods, “Motion Vector Quantization for Video Coding,” IEEE Trans. Image processing, 4, pp. 378-382, 1995.
20.R. Li, B. Zeng and M. L. Liou, “A new three-step search algorithm for block motion estimation,” IEEE Transactions on Circuit and System for Video Technology, 4, pp. 438-442, August 1994.
21.A. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion vectors,” IEEE Trans. Circuits and Systems for Video Tech., 3, pp. 148-157, Apr. 1993.
22.A. Luthra, G. J. Sullivan and T. Wiegand, “Introduction to the special issue on the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Tech., 13, pp. 557-559, 2003.
23.C. M. Ou, C. F. Le and W. J. Hwang, “An Efficient VLSI architecture for H.264 Variable Block Size Motion Estimation,” IEEE Transactions on Consumer Electronics, 51, pp. 1291-1299, Nov. 2005.
24.F. Pan, X. Lin, R. Susanto, K. P. Lim, Z. G. Li, G. N. Feng, D. J. Wu, and S. Wu, “Fast mode decision algorithm for intra prediction in JVT,” presented at the 7th JVT-G013 Meeting, Pattaya, Thailand, Mar. 2003.
25.P. Pirsch, N. Demassieux, W. Gehrke; “VLSI Architectures for Video Compression-A Survey,” Proceedings of the IEEE, 83, pp. 220-246, 1995.
26.L. M. Po and W. C. Ma, “A novel Four-Step Search Algorithm for Block Motion Estimation,” IEEE Transactions on Circuit and Systems for Video Technology, 6, pp. 313-317, June 1996.
27.R. Rao and J. J. Hwang, Techniques and Standards for Image, Video and Audio Coding, Prentice Hall, 1996.
28.I. E. G. Richardson, H.264 and MPEG-4 Video Compression, John Wiley and Sons, 2003.
29.A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits and Systems for Video Tech., 6, pp.243-250, 1996.
30.M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Proceeding, 41, pp. 3445-3462, 1993.
31.F. Shen, T. C. Wang and L. G. Chen, “A novel low-power full-search block-matching motion-estimation design for H.263+,” IEEE Trans. Circuits and Systems for Video Technology, 11, pp. 890-897, 2001.
32.J. Sullivan, P. Topiwala and A Luthra, “The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions”, SPIE Conference on Applications of Digital Image Processing, pp. 454-474, 2004.
33.T. Wiegand, G. J. Sullivan, G. Bjntegaard amd A. Luthra, “Overview of the H.264/AVC video coding standard”, IEEE Trans. Circuits Syst. Video Tech., 13, pp 560-576, 2003.
34.D. Wu, F. Pan, K. P. Lim, S. Wu, Z. G. Li, X. Lin, S. Rahardja, and C. C. Ko, “Fast Intermode Decision in H.264/AVC Video Coding”, IEEE Trans. Circuits and Systems for Video Technology, 15, July 2005
35.S. Y. Yap and J. V. McCanny, “A VLSI Architecture for Variable Block Size Video Motion Estimation,” IEEE Trans. Circuits and Systems, 51, pp. 384-389, 2004.
36.S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-matching motion estimation,” IEEE Transactions on Image Processing, 9, pp. 287-290, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top